scholarly journals Hydrogel-based microfluidics for vascular tissue engineering

2016 ◽  
Vol 17 (1-2) ◽  
Author(s):  
Anastasia Koroleva ◽  
Andrea Deiwick ◽  
Alexander Nguyen ◽  
Roger Narayan ◽  
Anastasia Shpichka ◽  
...  

AbstractIn this work, we have explored 3-D co-culture of vasculogenic cells within a synthetically modified fibrin hydrogel. Fibrinogen was covalently linked with PEG-NHS in order to improve its degradability resistance and physico-optical properties. We have studied influences of the degree of protein PEGylation and the concentration of enzyme thrombin used for the gel preparation on cellular responses. Scanning electron microscopy analysis of prepared gels revealed that the degree of PEGylation and the concentration of thrombin strongly influenced microstructural characteristics of the protein hydrogel. Human umbilical vein endothelial cells (HUVECs) and human adipose-derived stem cells (hASCs), used as vasculogenic co-culture, could grow in 5:1 PEGylated fibrin gels prepared using 1:0.2 protein to thrombin ratio. This gel formulation supported hASCs and HUVECs spreading and the formation of cell extensions and cell-to-cell contacts. Expression of specific ECM proteins and vasculogenic process inherent cellular enzymatic activity were investigated by immunofluorescent staining, gelatin zymography, western blot and RT-PCR analysis. After evaluation of the optimal gel composition and PEGylation ratio, the hydrogel was utilized for investigation of vascular tube formation within a perfusable microfluidic system. The morphological development of this co-culture within a perfused hydrogel over 12 days led to the formation of interconnected HUVEC-hASC network. The demonstrated PEGylated fibrin microfluidic approach can be used for incorporating other cell types, thus representing a unique experimental platform for basic vascular tissue engineering and drug screening applications.

Biomaterials ◽  
2008 ◽  
Vol 29 (8) ◽  
pp. 1075-1084 ◽  
Author(s):  
Markus Hoenicka ◽  
Volker R. Jacobs ◽  
Georgine Huber ◽  
Franz-Xaver Schmid ◽  
Dietrich E. Birnbaum

2012 ◽  
Vol 9 (1) ◽  
pp. 13-23 ◽  
Author(s):  
Silvia Mangold ◽  
Siegfried Schrammel ◽  
Georgine Huber ◽  
Markus Niemeyer ◽  
Christof Schmid ◽  
...  

2006 ◽  
Vol 54 (S 1) ◽  
Author(s):  
K Kallenbach ◽  
J Heine ◽  
E Lefik ◽  
S Cebotari ◽  
A Lichtenberg ◽  
...  

2020 ◽  
Vol 27 (10) ◽  
pp. 1634-1646 ◽  
Author(s):  
Huey-Shan Hung ◽  
Shan-hui Hsu

Treatment of cardiovascular disease has achieved great success using artificial implants, particularly synthetic-polymer made grafts. However, thrombus formation and restenosis are the current clinical problems need to be conquered. New biomaterials, modifying the surface of synthetic vascular grafts, have been created to improve long-term patency for the better hemocompatibility. The vascular biomaterials can be fabricated from synthetic or natural polymers for vascular tissue engineering. Stem cells can be seeded by different techniques into tissue-engineered vascular grafts in vitro and implanted in vivo to repair the vascular tissues. To overcome the thrombogenesis and promote the endothelialization effect, vascular biomaterials employing nanotopography are more bio-mimic to the native tissue made and have been engineered by various approaches such as prepared as a simple surface coating on the vascular biomaterials. It has now become an important and interesting field to find novel approaches to better endothelization of vascular biomaterials. In this article, we focus to review the techniques with better potential improving endothelization and summarize for vascular biomaterial application. This review article will enable the development of biomaterials with a high degree of originality, innovative research on novel techniques for surface fabrication for vascular biomaterials application.


Sign in / Sign up

Export Citation Format

Share Document