scholarly journals Descriptor fractional discrete-time linear system with two different fractional orders and its solution

2016 ◽  
Vol 64 (1) ◽  
pp. 15-20 ◽  
Author(s):  
Ł. Sajewski

Abstract Factional Discrete-time linear systems with fractional different orders are addressed. The Weierstrass-Kronecker decomposition theorem of the regular pencil is extended to the descriptor fractional discrete-time linear system with different fractional orders. Using the extension, method for finding the solution of the state equation is derived. Effectiveness of the method is demonstrated on a numerical example.

2017 ◽  
Vol 65 (5) ◽  
pp. 709-714 ◽  
Author(s):  
Ł. Sajewski

Abstract Positive descriptor fractional discrete-time linear systems with fractional different orders are addressed in the paper. The decomposition of the regular pencil is used to extend necessary and sufficient conditions for positivity of the descriptor fractional discrete-time linear system with different fractional orders. A method for finding the decentralized controller for the class of positive systems is proposed and its effectiveness is demonstrated on a numerical example.


Author(s):  
Łukasz Sajewski

Abstract Reachability and minimum energy control of descriptor fractional discrete-time linear systems with different fractional orders are addressed. Using the Weierstrass–Kronecker decomposition theorem of the regular pencil, a solution to the state equation of descriptor fractional discrete-time linear systems with different fractional orders is given. The reachability condition of this class of systems is presented and used for solving the minimum energy control problem. The discussion is illustrated with numerical examples.


2016 ◽  
Vol 64 (2) ◽  
pp. 395-399 ◽  
Author(s):  
T. Kaczorek

Abstract The Drazin inverse of matrices is applied in order to find the solutions of the state equations of fractional descriptor discrete-time linear systems. The solution of the state equation is derived and the set of consistent initial conditions for a given set of admissible inputs is established. The proposed method is illustrated by a numerical example.


2012 ◽  
Vol 60 (2) ◽  
pp. 279-284 ◽  
Author(s):  
M. Busłowicz

Abstract. The stability problem of continuous-time linear systems described by the state equation consisting of n subsystems with different fractional orders of derivatives of the state variables has been considered. The methods for asymptotic stability checking have been given. The method proposed in the general case is based on the Argument Principle and it is similar to the modified Mikhailov stability criterion known from the stability theory of natural order systems. The considerations are illustrated by numerical examples.


2013 ◽  
Vol 7 (1) ◽  
pp. 26-33 ◽  
Author(s):  
Tadeusz Kaczorek

Abstract New classes of singular fractional continuous-time and discrete-time linear systems are introduced. Electrical circuits are example of singular fractional continuous-time systems. Using the Caputo definition of the fractional derivative, the Weierstrass regular pencil decomposition and Laplace transformation the solution to the state equation of singular fractional linear systems is derived. It is shown that every electrical circuit is a singular fractional systems if it contains at least one mesh consisting of branches with only ideal supercondensators and voltage sources or at least one node with branches with supercoils. Using the Weierstrass regular pencil decomposition the solution to the state equation of singular fractional discrete-time linear systems is derived. The considerations are illustrated by numerical examples.


Author(s):  
Tadeusz Kaczorek

The Drazin inverse of matrices is applied to find the solutions of the state equations of descriptor fractional discrete-time systems with regular pencils. An equality defining the set of admissible initial conditions for given inputs is derived. The proposed method is illustrated by a numerical example.


2014 ◽  
Vol 24 (3) ◽  
pp. 289-297
Author(s):  
Tadeusz Kaczorek

Abstract A new method is proposed of design of regular positive and asymptotically stable descriptor systems by the use of state-feedbacks for descriptor continuous-time linear systems with singular pencils. The method is based on the reduction of the descriptor system by elementary row and column operations to special form. A procedure for the design of the state-feedbacks gain matrix is presented and illustrated by a numerical example


2017 ◽  
Vol 27 (1) ◽  
pp. 119-128
Author(s):  
Tadeusz Kaczorek ◽  
Kamil Borawski

Abstract The problem of eigenvalue assignment in fractional descriptor discrete-time linear systems is considered. Necessary and sufficient conditions for the existence of a solution to the problem are established. A procedure for computation of the gain matrices is given and illustrated by a numerical example.


2013 ◽  
Vol 23 (2) ◽  
pp. 309-315 ◽  
Author(s):  
Tadeusz Kaczorek

Methods for finding solutions of the state equations of descriptor fractional discrete-time and continuous-time linear systems with regular pencils are proposed. The derivation of the solution formulas is based on the application of the Z transform, the Laplace transform and the convolution theorems. Procedures for computation of the transition matrices are proposed. The efficiency of the proposed methods is demonstrated on simple numerical examples.


2015 ◽  
Vol 4 (1) ◽  
pp. 108
Author(s):  
Midian Manurung

Given the following discrete time-invariant linear control systems:where x 2 Rnx(t + 1) = Ax(t) + Bu(t);y(t) = Cx(t);is the state vector, u 2 Rmis an input vector, y 2 Rris dened as anoutput, A 2 Rnn, B 2 Rnm, and t 2 Zis dened as time. Linear system is said to beobservable on the nite time interval [t0; t+f] if any initial state xis uniquely determinedby the output y(t) over the same time interval. In order to examine the observabilityof the system, we will use a criteria, that is by determining the observability Gramianmatrix of the system is nonsingular and rank of the observability matrix for the systemis n.


Sign in / Sign up

Export Citation Format

Share Document