scholarly journals Aided Phytostabilization of Copper Contaminated Soils with L. Perenne and Mineral Sorbents as Soil Amendments

2017 ◽  
Vol 26 (3) ◽  
pp. 79-89 ◽  
Author(s):  
Maja Radziemska

Abstract The present study was designed to assess phytostabilization strategies for the treatment of soil co-contaminated by increasing levels of copper with the application mineral amendments (chalcedonite, zeolite, dolomite). From the results it will be possible to further elucidate the benefits or potential risks derived from the application of different types of mineral amendments in the remediation of a copper contaminated soil. A glasshouse pot experiment was designed to evaluate the potential use of different amendments as immobilizing agents in the aided phytostabilization of Cu-contaminated soil using ryegrass (Lolium perenne L.). The content of trace elements in plants and total in soil, were determined using the method of spectrophotometry. All of the investigated element contents in the tested parts of L. perenne were significantly different in the case of applying mineral amendments to the soil, as well as increasing concentrations of copper. The greatest average above-ground biomass was observed for soil amended with chalcedonite. In this experiment, all analyzed metals accumulated predominantly in the roots of the tested plant. In general, applying mineral amendments to soil contributed to decreased levels of copper concentrations.

2020 ◽  
Vol 22 (5) ◽  
pp. 1110-1124 ◽  
Author(s):  
Colin J. Cunningham ◽  
Maria S. Kuyukina ◽  
Irena B. Ivshina ◽  
Alexandr I. Konev ◽  
Tatyana A. Peshkur ◽  
...  

The problems associated with potential risks of antibiotic resistance spreading during bioremediation of oil-contaminated soil are discussed. Careful selection of bacterial strains and pretreatment of organic wastes used as fertilizers are suggested.


2017 ◽  
Vol 10 (6) ◽  
pp. 1585-1595 ◽  
Author(s):  
Maja Radziemska ◽  
Magdalena Daria Vaverková ◽  
Zbigniew Mazur

2005 ◽  
Vol 270 (1) ◽  
pp. 1-12 ◽  
Author(s):  
R. L. Hough ◽  
A. M. Tye ◽  
N. M. J. Crout ◽  
S. P. McGrath ◽  
H. Zhang ◽  
...  

2011 ◽  
Vol 356-360 ◽  
pp. 63-69
Author(s):  
Liang Peng Yi ◽  
Zu Wei Wang

In order to use the Cd-contaminated saline soil, experiments have been carried out to analyze the differences among effects of three salts on cadmium accumulation capacities of Brassica Napus in Cd-contaminated soil, thus to figure out the phytoremediation effects of planting Brassica Napus in different types of Cd-contaminated saline soils. Brassica Napus(a cadmium hyperaccumulator plant) has been as the research plant, the Brassica Napus was planted in Cd-contaminated soils (Cd: 10 mg•kg-1) with different salt concentrations(0 g•kg-1, 2g•kg-1,4 g•kg-1 and 6 g•kg-1) for 60 days as required by the greenhouse pot soil culture experiment, thus to study the bioconcentration factor(BCF) of Brassica Napus on Cd and the effects of Brassica Napus on the changes of concentrations in the shoots and roots. The three main salts in the soil, namely, sodium chloride, sodium sulfate and sodium carbonate, were chosen as the analysis and research objects. The results showed that the soil containing sodium carbonate inhibited the Brassica Napus from absorbing Cd in the soil, so did the soil containing sodium sulfate, however, the effect was not so obvious as that of the soil containing sodium carbonate. However, the soil containing sodium chloride had little impact on Cd absorption of the Brassica Napus that it could only slightly promote the cadmium accumulation capacities of Brassica Napus under a very high concentration, In different types of saline soils, there were significant differences among the effects of different salts on cadmium accumulation capacities of Brassica Napus, the sodium chloride in the soil had little impact on cadmium accumulation capacities of the roots of Brassica Napus, however, it could enhance the cadmium accumulation capacities of the shoots of Brassica Napus; the sodium carbonate in the soil could significantly inhibit the shoots and roots of Brassica Napus from accumulating the cadmium, therefore, it was not conducive for the Brassica Napus to accumulate cadmium.


2011 ◽  
Vol 57 (No. 8) ◽  
pp. 372-380 ◽  
Author(s):  
L. Trakal ◽  
M. Komárek ◽  
J. Száková ◽  
V. Zemanová ◽  
P. Tlustoš

The aim of this study was to evaluate metals (Cd, Cu, Pb and Zn) sorption behavior after biochar application into a metal-contaminated soil. Additionally, two different types of biochar originated from the same organic material (contaminated and uncontaminated) at different application rates (1% and 2% w/w) were evaluated as a novelty of the experiment. Batch sorption/desorption experiments were established to compare the sorption behavior of metals originating from single- and multi-element solutions. Zinc as one of the main contaminants in the studied soil was easily desorbed in the presence of Cu, Pb and to a lesser extent by Cd. This desorption was reduced after biochar application. The obtained results proved the different sorption behavior of metals in the single-metal solution compared to the multi-metal ones due to competition effect. Moreover, during multi-element sorption, Zn was significantly desorbed. The applied biochar enhanced Cu and Pb sorption and no changes were observed when contaminated and uncontaminated biochar was used. Furthermore, the application rate (1% and 2% w/w) had no effect as well. In summary, it is needed to point out that the applied rates of biochars were insufficient for metal immobilization in such contaminated soils.


Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1455
Author(s):  
Tomasz Głąb ◽  
Krzysztof Gondek ◽  
Monika Mierzwa-Hersztek

The use of straw as a soil amendment is a well-known and recommended agronomy practice, but it can lead to negative effects on the soil and crop yield. It has been hypothesized that many problems related to the burying of straw can be overcome by pyrolyzing it. The objective of this study was to determine the effect of straw and its biochar on the biomass production of perennial ryegrass. A pot-based experiment was conducted with three factors: (i) the crop species used as feedstock, (ii) raw or pyrolyzed organic material, and (iii) the rate of organic amendments. The soil in the pots was amended with straw and biochar produced from Miscanthus (Miscanthus × giganteus) or winter wheat (Triticum aestivum L.). After soil amendment application, perennial ryegrass (Lolium perenne L.) seeds were sown. During two years of the experiment, the perennial ryegrass above-ground biomass production and root biomass and morphology parameters were determined. Straw and biochar resulted in higher perennial ryegrass above-ground biomass compared with that of the non-fertilized control. However, straw amendment resulted in lower plant yields of above-ground biomass than those of the biochar treatments or the mineral fertilizer control treatment. The feedstock type (Miscanthus or wheat) significantly affected the perennial ryegrass yield. No difference was observed among wheat and Miscanthus biochar, while among straws, Miscanthus resulted in lower perennial ryegrass productivity (the higher rate of straw and biochar as soil amendments resulted in relatively high perennial ryegrass productivity). The organic amendments resulted in relatively high root biomass and length. The root:shoot ratio was lower in the treatments in which biochar was used, whereas feedstock species and amendment rate were not statistically significant for any of the root biomass and morphometric parameters. The results suggest that the use of pyrolyzed straw can be a reliable strategy instead of straw, increasing ryegrass growth and productivity.


Sign in / Sign up

Export Citation Format

Share Document