scholarly journals Drought Tolerance Studies in Wheat (Triticum Aestivum L.)

2015 ◽  
Vol 47 (4) ◽  
pp. 133-140 ◽  
Author(s):  
S. Mahpara ◽  
S.T. Hussain ◽  
J. Farooq

Abstract Wheat is a foremost staple food crop of Pakistan and plays a vital role for stability of country's economy and people's food requirement. Shortage of water has remained a consistent problem for the farmers over past few years and different agronomic techniques have been introduced into the limelight. But there is an immense scope of making some genetic manipulations to improve/enhance the drought tolerance of wheat. It has been observed by many researchers that yield in drought stress conditions, is a fine fusion of the traits like days taken by crop to reach physical maturity, water use efficiency, crop water use and harvest index. Drought being one of the main limiting factors of wheat production should be highly preferred in the future wheat improvement programs.

2007 ◽  
Vol 87 (2) ◽  
pp. 289-292 ◽  
Author(s):  
H. Wang ◽  
T. N. McCaig ◽  
R. M. DePauw ◽  
J. M. Clarke ◽  
R. Lemke

Recently developed cultivars of Canada Western Red Spring (CWRS) wheat (Triticum aestivum L.) and Canada Western Amber Durum (CWAD) (Triticum turgidum L. var durum) produced significantly more grain than older cultivars. This production was attributed to higher harvest indices and better water use efficiency. Durum cultivars and CWRS AC Intrepid and AC Barrie extracted relatively more soil water below 55 cm, which may be advantageous in minimizing leaching and related to drought tolerance during grain-filling. Key words: Hexaploid wheat, durum, water use, soil water


2021 ◽  
Vol 78 (5) ◽  
Author(s):  
Guilherme Filgueiras Soares ◽  
Walter Quadros Ribeiro Júnior ◽  
Lucas Felisberto Pereira ◽  
Cristiane Andréa de Lima ◽  
Daiane dos Santos Soares ◽  
...  

2012 ◽  
Vol 59 (No. 1) ◽  
pp. 1-7 ◽  
Author(s):  
B. Wang ◽  
W. Liu ◽  
Q. Xue ◽  
T. Dang ◽  
C. Gao ◽  
...  

The objective of this study was to investigate the effect of nitrogen (N) management on soil water recharge, available soil water at sowing (ASWS), soil water depletion, and wheat (Triticum aestivum L.) yield and water use efficiency (WUE) after long-term fertilization. We collected data from 2 experiments in 2 growing seasons. Treatments varied from no fertilization (CK), single N or phosphorus (P), N and P (NP), to NP plus manure (NPM). Comparing to CK and single N or P treatments, NP and NPM reduced rainfall infiltration depth by 20–60 cm, increased water recharge by 16–21 mm, and decreased ASWS by 89–133 mm in 0–300 cm profile. However, crop yield and WUE continuously increased in NP and NPM treatments after 22 years of fertilization. Yield ranged from 3458 to 3782 kg/ha in NP or NPM but was 1246–1531 kg/ha in CK and single N or P. WUE in CK and single N or P treatments was < 6 kg/ha/mm but increased to 12.1 kg/ha/mm in a NP treatment. The NP and NPM fertilization provided benefits for increased yield and WUE but resulted in lower ASWS. Increasing ASWS may be important for sustainable yield after long-term fertilization.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Dario Mantovani ◽  
Maik Veste ◽  
Dirk Freese

Black locust (Robinia pseudoacaciaL.) is a drought-tolerant fast growing tree, which could be an alternative to the more common tree species used in short-rotation coppice on marginal land. The plasticity of black locust in the form of ecophysiological and morphological adaptations to drought is an important precondition for its successful growth in such areas. However, adaptation to drought stress is detrimental to primary production. Furthermore, the soil water availability condition of the initial stage of development may have an impact on the tree resilience. We aimed to investigate the effect of drought stress applied during the resprouting on the drought tolerance of the plant, by examining the black locust growth patterns. We exposed young trees in lysimeters to different cycles of drought. The drought memory affected the plant growth performance and its drought tolerance: the plants resprouting under drought conditions were more drought tolerant than the well-watered ones. Black locust tolerates drastic soil water availability variations without altering its water use efficiency (2.57 g L−1), evaluated under drought stress. Due to its constant water use efficiency and the high phenotypic plasticity, black locust could become an important species to be cultivated on marginal land.


Sign in / Sign up

Export Citation Format

Share Document