scholarly journals Spontaneous non-linear oscillations of interfacial tension at oil/water interface

2015 ◽  
Vol 13 (1) ◽  
Author(s):  
Nina M. Kovalchuk

AbstractThree particular systems are considered where transfer of a surfactant across the interface between two immiscible liquids, water and oil, is accompanied by spontaneous oscillations of relaxation type with an abrupt decrease of interfacial tension followed by its gradual increase. These oscillations cannot be explained in the frameworks of linear stability analysis, because they are related to essentially non-linear effects. The oscillations characteristics depend on the properties of a surfactant (interfacial activity, solubility, partition coefficient, density difference between the surfactant solution and pure solvent), other solutes present in one or both liquid phases, and, usually, also on the system geometry. If the transferred surfactant is an ionic one, then, the oscillations of interfacial tension are synchronised with the oscillations of electric potential across the interface. The available hypothesis about oscillations mechanism are discussed, in particular, the model proposed recently for oscillations due to Marangoni instability by surfactant transfer from a point source located in one of the liquid bulk phases.

1991 ◽  
Vol 69 (1) ◽  
pp. 151-156 ◽  
Author(s):  
Mikhail D. Kandelaki ◽  
Alexander G. Volkov

We have investigated polarographically the dependence of the dioxygen yield on the concentration of 2,4-dinitrophenol in photooxidation of water in an octane/water system containing hydrated oligomer of chlorophyll, a water-soluble electron acceptor ferricyanide and a buffer. A linear correlation between the rate of dioxygen evolution and the photopotential at the interface between the two liquid phases is observed. Investigation of the dependences of photopotential and rate of dioxygen evolution on the dielectric permittivity of the nonaqueous phase has shown that with increasing dielectric permittivity, one can observe a decrease in both the reaction rate and the potential difference. The lifetime of chlorophyll in the course of water photooxidation reaction has been measured. Key words: chlorophyll, oxygen, water photooxidation, oil/water interface, artificial photosynthesis.


2011 ◽  
Vol 391-392 ◽  
pp. 156-160
Author(s):  
Shan Fa Tang ◽  
Xiao Dong Hu ◽  
Xiang Nan Ouyang ◽  
Shuang Liu

Both transient-state and steady-state interfacial tension (IFT) between anion Gemini surfactants solution and crude oil were measured. The effects of various parameters such as anion Gemini surfactant molecular structure, concentration, category of crude oil and salinity of water medium on the interfacial tension between crude oil and water were investigated in detail. The results reveal that when the length of the carbon chain or the carbon number of spacer is constants, the increase of either carbon number of interval groups or length of carbon chain is favorable to decrease the interfacial tension. AN12-4-12 has the lowest interfacial tension. As the concentration of anion Gemini surfactant increasing, the interfacial tension between crude oil and water decreases. Anion Gemini surfactants which have a larger carbon number of interval group and longer hydrophobic carbon chain have a better interfacial activity. AN12-4-12 has the best interfacial activity. When the concentration of AN10-4-10, AN12-4-12 reaches up to 2000 mg•L-1, it can lower the steady-state oil-water IFT to 10-3mN•m-1. Different kinds of crude oil have different effects of decreasing IFT and different interfacial activity for the same anion Gemini surfactant. The Critical Micelle Concentration (352mg•L-1, 487mg•L-1) of AN8-4-8 and AN12-4-12 between thin oil and water interface is obviously lower than those (1000mg•L-1, 3000mg•L-1) between mixed heavy oil and water interface. But molecular structure still has a larger influence on interfacial tension than category of crude oil. The IFT between AN12-4-12 solutions and mixed heavy oil lower an order of magnitude than that between AN8-4-8 solutions and mixed heavy oil. As the solution salinity increased, the interfacial tension between anion Gemini surfactant solution and thin oil decrease rapidly. The longer the hydrophobic carbon chain is, the more obvious the effect of salinity is. The salinity is not less than 1.2×105mg•L-1, AN12-4-12 can decrease the oil-water interfacial tension to 2.2×10-3mN•m-1, while AN8-4-8 only makes that reduce to 9.7×10-3mN•m-1.


2014 ◽  
Vol 1033-1034 ◽  
pp. 486-490
Author(s):  
Hai Yan Zhang

The interfacial tension (IFT) and contact angles of different oil/solutions were compared to unveil the influence of Mg2+on oil/NaOH interfacial properties. The results demonstrate that adding Mg2+to NaOH solution cannot change the oil/NaOH interfacial tension when enough OH-is provided. While for NaOH-surfactant solution, adding Mg2+changes the IFT dramatically. Adding NaOH to oil/water produces a minimal contact angle at NaOH of 0.02wt%. Adding surfactant or MgCl2alone increases the contact angles. Adding them together produces a synergism to bringing down contact angles gradually with the increase of NaOH concentration. The change of salinity and the reaction among them may be responsible for the influence and synergism.


1978 ◽  
Vol 18 (06) ◽  
pp. 409-417 ◽  
Author(s):  
D.T. Wasan ◽  
S.M. Shah ◽  
N. Aderangi ◽  
M.S. Chan ◽  
J.J. McNamara

Original manuscript received in Society of Petroleum Engineers office Sept. 20, 1977. Paper accepted for publication June 2, 1978. Revised manuscript received Aug. 2, 1978. Paper (SPE 6846) was presented at SPE-AIME 52nd Annual Fall Technical Conference and Exhibition, held in Denver, Oct. 9-12, 1977. Abstract Results of experiments on the coalescence of crude oil drops at an oil-water interface and interdroplet coalescence in crude oil-water emulsions containing petroleum sulfonates and cosurfactant as surfactant systems with other chemical additives were analyzed in terms of interracial viscosity, interfacial tension, interfacial charge, and thickness of the films surrounding the microdroplets. A qualitative correlation was found between coalescence rates and interfacial viscosities; however, there appears to be no direct correlation with interfacial tension. New insight has been gained into the influence of emulsion stability in tertiary oil recovery by surfactant/polymer flooding in laboratory core tests. We concluded that those systems that result in relatively stable emulsions yield poor coalescence rates and, hence, poor oil recovery, Introduction The ability of the surfactant/polymer system to initiate and to propagate an oil bank is the single most important feature of a successful tertiary oil-recovery process. The mechanisms of oil-bank formation and development are yet unknown. It has been suggested that without the initiation of the oil bank, the process behaves more like the unstable injection of a surfactant solution alone, where the oil is produced by entrainment or emulsification in the flowing surfactant stream. In a laboratory study of the initial displacement of residual hydrocarbons by aqueous surfactant solutions, Childress and Schechter and Wade observed that those systems that spontaneously emulsified and coalesced rapidly yielded better oil recovery than those systems that spontaneously formed stable emulsions. Recently, Strange and Talash, Whitley and Ware, and Widmeyer et al. reported results of Salem (IL) low-tension, water-flood tests that used Witco TRS 10-80 TM petroleum sulfonate surfactant solution. They found stable oil-in-water emulsions at the observer well in addition to emulsion problems at the production well and reported that problems at the production well and reported that actual oil recovery was about one-quarter the target value. These studies clearly suggested that poor efficiency of oil recovery results from emulsion stability problems in the low-tension surfactant or micellar processes. Vinatieri presented results of experiments on the stability of crude-oil-in-water emulsions that coo be produced during a surfactant or micellar flood. More recently, we have assessed the rigidity of interfacial films and its relationship to coalescence rate through measurements of interfacial viscosities of crude oils contacted against aqueous solutions containing various concentrations of surfactants and other pertinent chemical additives. Our data clearly indicate that in the absence of a commercial surfactant, interfacial viscosity builds up rapidly, coalescence is inhibited, and the resulting emulsion is quite stable. These phenomena also have been observed by Gladden and Neustadter. Several studies were conducted on the structure of film-forming material at the crude oil/water interface, its effect on emulsion stability, and the role of such films in oil recovery by water or caustic solution displacements. Rigid films were found to reduce the amount of oil recovered. Our studies also have shown that the addition of a commercial surfactant lowered both the interfacial viscosity (ISV) and interfacial tension (IFT) of the crude oil-aqueous solution system. However, the concentration at which both the IFT and ISV are minimized cannot be identified by measuring IFT alone. We have conducted a cinephotomicrographic examination of spontaneous emulsification and a microvisual study of the displacement of residual crude oil by aqueous surfactant solutions in micromodel porous media. SPEJ P. 409


Author(s):  
Gilles Tissot ◽  
Mengqi Zhang ◽  
Francisco C. Lajús ◽  
André V. Cavalieri ◽  
Peter Jordan ◽  
...  

2009 ◽  
Vol 4 (1) ◽  
pp. 51-61 ◽  
Author(s):  
Vladimir Vladimirov ◽  
Maria Neycheva

Determinants of Non-Linear Effects of Fiscal Policy on Output: The Case of BulgariaThe paper illuminates the non-linear effects of the government budget on short-run economic activity. The study shows that in the Bulgarian economy under a Currency Board Arrangement the tax policy impacts the real growth in the standard Keynesian manner. On the other hand, the expenditure policy exhibits non-Keynesian behavior on the short-run output: cuts in government spending accelerate the real GDP growth. The main determinant of this outcome is the size of the discretionary budgetary changes. The results imply that the balanced budget rule improves the sustainability of public finances without assuring a growth-enhancing effect.


Sign in / Sign up

Export Citation Format

Share Document