scholarly journals Application of physical theory of cavity in the construction of double skin facades

2021 ◽  
Vol 9 (1) ◽  
pp. 40-53
Author(s):  
Boris Bielek ◽  
Daniel Szabó ◽  
Josip Klem ◽  
Kristína Kaniková

Abstract The article deals with the issue of double skin transparent facades as a new technological-operational system of transparent exterior walls. Especially of high-rise buildings, which with its operating modes ingeniously uses a renewable source of solar energy to reduce the energy needs of the building. The basic precondition for the correct function of the double skin facade is its functional aerodynamics in any climatic conditions of the outdoor climate. In the critical state of windlessness, the aerodynamic quantification of a double skin facade is the total aerodynamic resistance of the cavity, which consists of the aerodynamic frictional resistances along the length of the air flow line and local aerodynamic resistances of the cavity. The article analyses the functional aerodynamics on two frequented types of double skin facades with a narrow type and corridor type cavity. At the end it confronts functional aerodynamics with the results of their temperature, aerodynamic and energy regime obtained from in-situ experiments.

2021 ◽  
pp. 68-72
Author(s):  
Alexander A. Plotnikov

Currently, insulated glass units (hereinafter abbreviated as IGU) are the main type of translucent filling used in curtain walls. Under the influence of climatic loads in IGU, the thickness of the inter-glass space changes, leading to the deformation of the glasses. Deformations of glass lead to optical distortions on curtain walls. The paper considers the technical solutions used in the existing engineering practice to reduce the distorting curvature of IGU: the use of more rigid external glasses as part of IGU, the use of double-skin facades with external independent single glass, the use of vacuum IGUs. A new method is proposed to reduce the distorting curvature of IGUs by fixing the thickness of the interglass space. It is achieved by installing other point or linear supports between the panes. The introduction of other supports solves the problem of reducing deformations only when IGU is compressed. When the interglass space is expanded, the supports are turned off from operation and the glass is freely deformed. Therefore, to avoid such deflections, it is necessary to pre-compress the IGU under a load equivalent to the climatic load on the IGUs operating in the construction area of the object. Calculations show that for the climatic conditions of the city of Moscow, the required degree of rarefaction the interglass spaces is only 5 % of the absolute atmospheric pressure.


Author(s):  
Yao Tao ◽  
Xiang Fang ◽  
Michael Yit Lin Chew ◽  
Lihai Zhang ◽  
Jiyuan Tu ◽  
...  

2013 ◽  
Vol 787 ◽  
pp. 711-716
Author(s):  
Daryanto ◽  
Eko Budihardjo ◽  
Wahyu Setyabudi ◽  
Gagoek Hardiman

There was an indication that high rise buildings in Jakarta was not designed based on energy conservation principles. The most important aspects of the high-rise buildings is energy saving technology located in the building envelope design. Building envelope with a full glass design functions for widening view and enhancing natural lights, even though but it is also increasing energy consumption and thermal discomfort due to the intensity of solar radiation in hot humid climates. During the current decade, the development of double building envelope type (Double Skin Façade: DSF) seemed more just to improve the aesthetics and the use of natural light, while the wind and thermal performance aspects were still lack of serious consideration. Those aspects will be chosen as the subject matter in this research. The research was aimed to investigate and compare the value of heat transfer in the building envelope of high-rise office buildings. Samples were taken from five DSF buildings, with closed and open cavity. CFD software is used for simulation of the five different models of DSF. The research proves that the high-rise office buildings as the research object in Jakarta do not apply energy conservation principle. The utilization of wind in the DSF cavity can reduce temperature and relieve the burden of air conditioning systems that is energy save. An important finding of the research is the need for ventilation in the design of a double skin at high-rise office buildings in the humid tropics.


2021 ◽  
Vol 13 (9) ◽  
pp. 5027
Author(s):  
Wenjie Zhang ◽  
Tongdan Gong ◽  
Shengbing Ma ◽  
Jianwei Zhou ◽  
Yingbo Zhao

In building integrated photovoltaics (PV), it is important to solve the heat dissipation problem of PV modules. In this paper, the computational fluid dynamics (CFD) method is used to simulate the flow field around the open-joint photovoltaic ventilated double-skin façades (OJ-PV-DSF) to study the influence of the mounting dimensions (MD) of a PV array on the module temperature. The typical summer afternoon meteorological parameters, such as the total radiation (715.4 W/m2), the outdoor temperature (33.1 °C), and the wind speed (2.0 m/s), etc., are taken as input parameters. With the DO (discrete ordinates) model and the RNG (renormalization-group) k − ε model, a steady state calculation is carried out to simulate the flow of air in and around the cavity under the coupling of hot pressure and wind pressure, thereby obtaining the temperature distribution of the PV array and the wall. In addition, the simulation results are compared with the onsite experimental data and thermal imaging to verify the accuracy of the CFD model. Then three MD of the open joints are discussed. The results show that when the a value (represents the distance between PV modules and wall) changes from 0.05 to 0.15, the temperature drop of the PV module is the most obvious, reaching 2.0 K. When the b value (representing the distance between two adjacent PV modules in the vertical direction) changes from 0 to 0.1, the temperature drop of the PV module is most obvious, reaching 1 K. When the c value (represents the distance between two adjacent PV modules in the horizontal direction) changes from 0 to 0.1, the temperature of the PV module is lowered by 0.8 K. Thus, a = 0.1–0.15, b = 0.1 and c = 0.1 are recommended for engineering applications to effectively reduce the module temperature.


ce/papers ◽  
2018 ◽  
Vol 2 (5-6) ◽  
pp. 103-112
Author(s):  
Fabian Schmid ◽  
Xenia Cseh ◽  
Emil Rohrer ◽  
Martien Teich

2020 ◽  
pp. 497-502
Author(s):  
J. Hraska ◽  
M. Janak ◽  
R. Rabenseifer ◽  
R. Strigner

Sign in / Sign up

Export Citation Format

Share Document