Corrosion characteristics of sulfate-reducing bacteria (SRB) and the role of molecular biology in SRB studies: an overview

2016 ◽  
Vol 34 (1-2) ◽  
pp. 41-63 ◽  
Author(s):  
Balakrishnan Anandkumar ◽  
Rani P. George ◽  
Sundaram Maruthamuthu ◽  
Natarajan Parvathavarthini ◽  
Uthandi Kamachi Mudali

AbstractSulfate-reducing bacteria (SRB), an anaerobic bacterial group, are found in many environments like freshwater, marine sediments, agricultural soil, and oil wells where sulfate is present. SRB derives energy from electron donors such as sulfate, elemental sulfur or metals, and fermenting nitrate. It is the major bacterial group involved in the microbiologically influenced corrosion (MIC), souring, and biofouling problems in oil-gas-producing facilities as well as transporting and storage facilities. SRB utilizes sulfate ions as an electron acceptor and produce H2S, which is an agent of corrosion, causing severe economic damages. Various theories have been proposed on the direct involvement of H2S and iron sulfides in corrosion; H2S directly attacks and causes corrosion of metals and alloys. Many reviews have been presented on the aforementioned aspects. This review specifically focused on SRB corrosion and the role of molecular biology tools in SRB corrosion studies viz. cathodic and anodic depolarization theories, corrosion characteristics of thermophilic SRB and influence of hydrogenase, temperature, and pressure in thermophilic SRB corrosion, SRB taxonomy, molecular approaches adopted in SRB taxonomical studies, sulfate and citrate metabolism analyses in completed SRB genomes, and comparative studies on SRB’s dissimilatory sulfite reductase structures.

2013 ◽  
Author(s):  
Kim F. Hayes ◽  
Yuqiang Bi ◽  
Julian Carpenter ◽  
Sung Pil Hyng ◽  
Bruce E. Rittmann ◽  
...  

2011 ◽  
Vol 368-373 ◽  
pp. 42-47
Author(s):  
Fu Shao Li ◽  
Mao Zhong An ◽  
Dong Xia Duan

Corrosion behaviors of low nickel alloy high strength steel (LNAHSS) was studied by electrochemical impedance spectroscopy and scanning electron microscopy when the coupons of LNAHSS were exposed to the seawater culture media. As the results, LNAHSS was uniformly corroded in the fresh sterilized culture medium in a mode of active dissolution; in the culture medium with sulfate-reducing bacteria (SRB), LNAHSS was protected by the iron sulfides layer to some extent in the early stage of exposure, but severely localized corrosion subsequently occurred resulting from the localized breakdown of iron sulfides layer. So, in risks estimation, special precautions should be taken when LNAHSS serves in the environments containing SRB as the localized area can become the tress raiser.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 625
Author(s):  
Lijuan Chen ◽  
Bo Wei ◽  
Xianghong Xu

The influence of sulfate-reducing bacteria (SRB) on the corrosion behaviors of X80 pipeline steel was investigated in a soil environment by electrochemical techniques and surface analysis. It was found that SRB grew well in the acidic soil environment and further attached to the coupon surface, resulting in microbiologically influenced corrosion (MIC) of the steel. The corrosion process of X80 steel was significantly affected by the SRB biofilm on the steel surface. Steel corrosion was inhibited by the highly bioactive SRB biofilm at the early stage of the experiment, while SRB can accelerate the corrosion of steel at the later stage of the experiment. The steel surface suffered severe pitting corrosion in the SRB-containing soil solution.


Sign in / Sign up

Export Citation Format

Share Document