scholarly journals A Simple Analytical Method for Determining Basic Hydrodynamic Characteristics of Hybrid Fluidized-Bed Air-Lift Apparatae

2017 ◽  
Vol 38 (1) ◽  
pp. 121-133
Author(s):  
Bolesław Tabiś ◽  
Dominika Boroń

Abstract A simple analytical method for determination of basic hydrodynamic characteristics of hybrid fluidized-bed air-lift devices was presented. These devices consist of two parts: a two-phase air-lift part and a two-phase liquid-solid fluidized-bed part. Forced circulation of fluid in the air-lift part is used for fluidization of solid particles in the fluidized-bed part. According to the opinion given in the literature, if such apparatus is used for aerobic microbiological processes, its advantage is lower shear forces acting on the biofilm immobilized on fine-grained material compared with shear forces in three-phase fluidized-bed bioreactors. Another advantage is higher biomass concentration due to its immobilization on fine particles, compared with two-phase airlift bioreactors. A method of calculating gas hold-up in the air-lift part, and gas and liquid velocities in all zones of the analyzed apparatus is presented.

2010 ◽  
Vol 64 (1) ◽  
pp. 35-46
Author(s):  
Milan Milivojevic ◽  
Danijela Andrejic ◽  
Branko Bugarski

In this study the hydrodynamic characteristics of the external loop airlift bioreactors were investigated. The influence of reactor height and solid particles concentration on the mean liquid circulation velocity was examined. Also, the possibility of theoretical prediction of this liquid circulation velocity was assessed. The correlation originally proposed by Glennon et al. (Chem. Eng. Commun. 121 (1993) 183-192) for two phase system liquid velocity prediction was extended and corrected for application to three phase systems. The accuracy of this new correlation was tested on our experimental data. The corrected correlation shows higher accuracy than the originally proposed one. In addition, the influence of reactor geometry and solid loading on reactor working performances was established.


2003 ◽  
Vol 125 (1) ◽  
pp. 17-25 ◽  
Author(s):  
Hitoshi Fujimoto ◽  
Satoshi Ogawa ◽  
Hirohiko Takuda ◽  
Natsuo Hatta

The pump performance of a small air-lift system for conveying solid particles is investigated experimentally. The total length of the vertical lifting pipe is 3200 mm, and the inner diameter of the pipe is 18 mm. The gas injector is set at a certain point of the pipe. The flows in the lifting pipe are water/solid two-phase mixtures below the gas injection point, and air/water/solid three-phase mixtures above it. The time-averaged characteristics of the flows are examined for various experimental conditions. The effects of particle diameter, particle density, the gas-injection point, and the volume flux of air on the pump performance are studied systematically. The critical boundary at which the particles can be lifted is discussed in detail based upon one-dimensional mixture model.


2013 ◽  
Vol 8 (1) ◽  
pp. 9-15

Biological treatment has been carried out in two different systems: aerated closed and threephase fluidized bed reactors for hydrocarbons removal from refinery wastewaters. For the two systems, hydrodynamic study allowed the determination of operating conditions before treatment experiments. Then, in a second time, biological treatments have been conducted in the same operating conditions. The obtained results showed that in the three-phase fluidized bed we can degrade hydrocarbons more rapidly than in a closed aerated bioreactor. Among the different appropriate techniques available to create efficient contacts between phases, the three-phase fluidization G/L/S where carrier particles are moving inside the reactor seems very interesting. It allows an intimate contact between phases and present many advantages concerning hydrodynamic and mass transfer phenomena. In fact, depending on operating conditions and the bubble flow behaviour, the three-phase fluidized bed could display different flow regimes In these systems called bioreactors the solid particles covered with a biofilm are fluidized by two ascending flows of air and contaminated water. With favourable operating conditions, from a hydrodynamic and mass transfer point of view, the pollutant can be biologically degraded up to 90%. Until this date, the three-phase bioreactors modelling remains very complex because it required taking into account several factors: the pollutant biodegradation rate in the biofilm, the bioreactor hydrodynamic characteristics, and the reactant interfacial gas-liquid and liquidsolid mass transfer. Thus the essential purpose of modelling is to integrate the microbial kinetics with the reactor hydrodynamics. We can notice that a few models have incorporated both bioreactor hydrodynamics and microbial kinetics. For the steady state bioreactor model, we generally assume that the particles are uniform in size, the biofilm is uniform in thickness, and the biofilm can be considered as homogeneous matrix through which oxygen and substrate diffuse and are consumed by the microbes. The liquid phase in the bioreactor substrate is considered to be axially dispersed while the gas phase is assumed to be in plug flow [2]. Rittmann (1997) proposed a model based on wake theory for predicting bed expansion and phase hold-ups for three-phase fluidized bed bioreactors. In this model he modified the correlation for the computation of the bioparticles drag coefficient CD [3]. He also attempted to explain the biofilm detachment which can occur with three broad patterns: erosion, sloughing and scouring and assumed that the factors affecting detachment rates can be grouped into two categories (physical forces and microorganisms physiology in the biofilm).


Author(s):  
Sivakumar Venkatachalam ◽  
Kannan Kandasamy ◽  
Senthilkumar Kandasamy

The effect of superficial gas and liquid velocities and properties of solids on the minimum fluidization velocity and riser liquid holdup of a three-phase external loop air lift fluidized bed reactor was characterized using Newtonian and non-Newtonian systems. Water, 65% and 85% of glycerol and n-Butanol were used as Newtonian liquids and different concentrations of carboxymethyl cellulose (i.e. 0.2%, 0.5% and 1% CMC) were used as non-Newtonian liquids. Spherical glass beads, bearl saddles and rasching rings of different sizes were used as solid phases. The phase flow rates and properties of solid particles had significant effects on the hydrodynamic characteristics of the external loop air lift fluidized bed reactor, such as minimum fluidization velocity and riser liquid holdup. Unified correlations have been developed to estimate the minimum fluidization velocity and riser liquid holdup as a function of superficial phase velocities, properties of solid particles and physical properties of both Newtonian and non-Newtonian liquid systems. The predicting ability of the correlations were tested with the experimental data and found to be a good fit with an absolute average relative deviation (AARD) of ± 6.5 % and ± 7.8 % for minimum fluidization velocity and riser liquid holdup, respectively.


Author(s):  
Moataz Bellah M. Mousa ◽  
Seif-Eddeen K. Fateen ◽  
Essam A. Ibrahim

Circulating Fluidized Bed Steam Reformers (CFBSRs) represent an important alternative for the production of syngas for the Fisher-Tropsch (FT) process and for hydrogen production. Most research regarding this novel CFBSRs did not consider its hydrodynamic characteristics. In this work, the riser Computational Fluid Dynamics (CFD) simulations were investigated using two phase Eulerian-Eulerian approach coupled with kinetic theory of granular flow with k-epsilon model to describe the turbulence of each phase. The model equations were solved via the commercial CFD package FLUENT, which uses the finite volume numerical approach. Cold flow simulations were carried out under the fast fluidization regime and results were validated qualitatively against available experimental data. The radial segregation of the catalyst, the velocity distribution of both phases and other characteristics of the flow were captured by the simulation. This work showed that for operation under high density and high flux conditions, solids flux should be higher than 300 kg/m2s and inlet void fraction lower than 85%.


Author(s):  
Hamid Reza Hakimelahi ◽  
Rahmat Sotudeh-Gharebagh ◽  
Navid Mostoufi

A mathematical model is proposed for the partial oxidation on n-butane to maleic anhydride (MAN) in a gas-solid fluidized bed reactor. The reactor consists of two regions, i.e., a lower dense region and an upper dilute region. The dynamic two-phase structure was used for modeling the lower dense bed hydrodynamics. The upper region hydrodynamics was modeled by a cluster based approach. This allows the porosity distribution to be calculated for plug flow reactor model assumed for the gas phase in this region. The basic assumption in the cluster based approach is that the solid particles move only as clusters and the amount of single particles in the upper region is negligible. The mathematical model was obtained from coupling the kinetic sub-model, obtained from the literature, with this hydrodynamics sub-model. Comparing the results of the model with the experimental data available in the literature showed close agreement. Two other methods (i.e., particle based approach and short-cut) were also tested in this work. However, it was found that the cluster based approach modeling is quite suitable for the fluidized bed reactor used in this study. The short-cut method seems reasonably applicable for the prediction of the overall conversion but does not provide any local information (such as concentration profiles, yield, etc.) within the fluidized bed reactor.


2016 ◽  
Vol 11 (3) ◽  
pp. 53-61
Author(s):  
Vladimir Salomatov ◽  
Andrey Gil ◽  
Aleksandr Starchenko ◽  
Roman Arkhipov

The peculiarity of mathematical modeling of the circulating fluidized bed (CFB) is that the solid phase (fuel and ash particles) is always a polydispersed medium. The paper constructed a mathematical model of gas dynamics, heat and mass transfer and combustion in the furnace volume of CFB steam generator with a highly concentrated content of the dispersed phase in relation to the investigation of processes in aerothermochemical CFB furnace. Taking into account: the turbulent structure of the two-phase flow, radiation heat transfer in a dusty environment, the chemical reaction kinetics of ignition and combustion, the effects of the power and thermal interactions between the particles and the particles with the wall. A model of such an environment has been chosen phenomenological model of interpenetrating continua Rahmatulina HA. The characteristic features of CFB technology are: firstly organized circulation of solid particles; Second, the repeated return unburned coarse fractions in the fluidised bed. As a result, during the low-temperature burn-in CFB increased almost two orders of magnitude compared with torch mode, allowing you to burn the most difficult fuels in the energy sector. Numerical analysis of data showed that the best results on the effects of polydisperse composition for fuel combustion characteristics in CFB process provides a particle size distribution in which a small fraction predominates.


2018 ◽  
Vol 156 ◽  
pp. 07002
Author(s):  
Nazratul Fareha Salahuddin ◽  
Ahmad Shamiri ◽  
Mohd Azlan Hussain ◽  
Navid Mostoufi

A modified two-phase model for gas phase propylene and ethylene copolymerization was chosen to represent the process in a fluidized bed reactor. This model considered the entrainment of solid particles in the reactor, as a modification to the original two-phase model assumptions. The non-linearity of this process makes it difficult to control just by using conventional controller such as PID. A hybrid control strategy (a simple designed fuzzy logic controller (FLC) integrated with generic model control (GMC)) is designed to control the temperature of the reactor. This advanced control system was compared with the GMC and conventional PID controller. The simulation results showed that the hybrid controller (Fuzzy-GMC) performed better than both GMC and PID in terms of both servo and regulatory control.


Sign in / Sign up

Export Citation Format

Share Document