scholarly journals Effect of selected additions on de novo synthesis of polychlorinated dioxins and furans

2016 ◽  
Vol 23 (2) ◽  
pp. 249-257 ◽  
Author(s):  
Grzegorz Wielgosiński ◽  
Olga Namiecińska ◽  
Patrycja Łechtańska ◽  
Adam Grochowalski

Abstract Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans are generally considered the most dangerous chemical substances known to man. Although they have never been the product of purposeful human activity, yet they are formed in many chemical and virtually all thermal processes. Research on the occurrence of dioxins in the environment, their release into the environment, ways of formation and methods of reducing their emissions lasts since the late seventies of the last century. Currently, we know three basic pathways of dioxins formation in thermal processes, the most important of them being the so called de novo synthesis which occurs outside the combustion zone at 200-400°C in the presence of catalysts (eg copper) and oxygen from the products of incomplete combustion including carbon black and chlorine or chlorinated compounds. It is well known that some metals like copper catalyze the de novo synthesis, while others decompose dioxins and furans formed previously. The formation of dioxins resulting from the de novo synthesis was studied through analysis of the effect of the type of metal on the course of the de novo synthesis. The influence of the addition of sulfur, nitrogen and alkali metals on this synthesis was also examined because some reports in the literature refer to inhibitory effect of these elements.

2014 ◽  
Vol 48 (14) ◽  
pp. 7959-7965 ◽  
Author(s):  
Nuria Ortuño ◽  
Juan A. Conesa ◽  
Julia Moltó ◽  
Rafael Font

HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 803D-803
Author(s):  
Shahid N. Chohan ◽  
Terence A. Brown

The RNA content of tomato seeds was shown to increase when the seeds were imbibed in water. This increase was due mainly to an increase in nuclear RNA, the polysomal content declining and the ribonucleoprotein fraction remaining constant. The poly(A)+RNA population also showed a gradual increase, again due to a high de novo synthesis rate in the nucleus. In the presence of 200 μM abscisic acid (ABA), the total nuclear DNA failed to increase in the manner seen with water imbibition, leading to an overall decline in RNA during the first 1.5 h. The polysomal and ribonucleoprotein fractions were unaffected by ABA. The decline in total nuclear RNA was due primarily to a major decrease in the nuclear poly(A)+ content of seeds imbibing with ABA. This reduction in de novo transcription may be a factor responsible for the inhibitory effect that ABA has on germination of tomato seeds.


2019 ◽  
Vol 11 (23) ◽  
pp. 3015-3027 ◽  
Author(s):  
Yapeng Lu ◽  
Lu Wang ◽  
Xinyang Wang ◽  
Haoliang Yuan ◽  
Yu Zhao

Aim: Identification of new anticancer glycosidic derivatives of podophyllotoxin. Methods: 14 podophyllotoxin D- and L-monosaccharides have been synthesized in three steps employing de novo glycosylation strategy, and their abilities to inhibit the growth of HeLa, HepG2, MCF-7, A549 and MDA-MB-231 cancer cells were investigated by MTT assay. Molecular docking study of compound 5j with tubulin was performed. Immunofluorescence was applied for detecting the inhibitory effect of 5j on tubulin polymerization. Results & conclusion: Most of synthesized compounds showed strong cytotoxicity activity against five cancer cell lines. Compound 5j possessed the highest cytotoxicity with the IC50 values from 41.6 to 95.2 nM, and could concentration-dependently inhibit polymerization of the microtubule cytoskeleton of MCF-7 cells. Molecular docking disclosed that sugar moiety-dedicated hydrogen bond endowed 5j a higher binding affinity for tubulin.


1993 ◽  
Vol 70 (02) ◽  
pp. 273-280 ◽  
Author(s):  
Janos Kappelmayer ◽  
Satya P Kunapuli ◽  
Edward G Wyshock ◽  
Robert W Colman

SummaryWe demonstrate that in addition to possessing binding sites for intact factor V (FV), unstimulated peripheral blood monocytes also express activated factor V (FVa) on their surfaces. FVa was identified on the monocyte surface by monoclonal antibody B38 recognizing FVa light chain and by human oligoclonal antibodies H1 (to FVa light chain) and H2 (to FVa heavy chain) using immunofluorescence microscopy and flow cytometry. On Western blots, partially cleaved FV could be identified as a 220 kDa band in lysates of monocytes. In addition to surface expression of FVa, monocytes also contain intracellular FV as detected only after permeabilization by Triton X-100 by monoclonal antibody B10 directed specifically to the Cl domain not present in FVa. We sought to determine whether the presence of FV in peripheral blood monocytes is a result of de novo synthesis.Using in situ hybridization, no FV mRNA could be detected in monocytes, while in parallel control studies, factor V mRNA was detectable in Hep G2 cells and CD18 mRNA in monocytes. In addition, using reverse transcriptase and the polymerase chain reaction, no FV mRNA was detected in mononuclear cells or in U937 cells, but mRNA for factor V was present in Hep G2 cells using the same techniques. These data suggest that FV is present in human monocytes, presumably acquired by binding of plasma FV, and that the presence of this critical coagulation factor is not due to de novo synthesis.


Sign in / Sign up

Export Citation Format

Share Document