scholarly journals Estimating Root Zone Moisture from Surface Soil Using Limited Data

2017 ◽  
Vol 24 (4) ◽  
pp. 501-516
Author(s):  
Wen-Zhi Zeng ◽  
Guo-Qing Lei ◽  
Hong-Ya Zhang ◽  
Ming-Hai Hong ◽  
Chi Xu ◽  
...  

Abstract For estimation of root-zone moisture content from EO-1/Hyperion imagery, surface soil moisture was first predicted by hyperspectral reflectance data using partial least square regression (PLSR) analysis. The textures of more than 300 soil samples extracted from a 900 m × 900 m field site located within the Hetao Irrigation District in China were used to parameterize the HYDRUS-1D numerical model. The study area was spatially discretized into 18,000 compartments (30 m × 30 m × 0.02 m), and Monte Carlo simulations were applied to generate 2000 different soil-particle size distributions for each compartment. Soil hydraulic properties for each realization were determined by application of artificial neural network analysis and used to parameterize HYDRUS-1D to simulate averaged soil-moisture contents within the root zone (0-40 cm) and surface (approximately 0-4 cm). Then the link between surface moisture and root zone was established by use of linear regression analysis, resulting in R and RMSE of 0.38 and 0.03, respectively. Kriging and co-kriging with observed surface moisture, and co-kriging with surface moisture obtained from Hyperion imagery were also used to estimate root-zone moisture. Results indicated that PLSR is a powerful tool for soil moisture estimation from hyperspectral data. Furthermore, co-kriging with observed surface moisture had the highest R (0.41) and linear regression model, and HYDRUS Monte Carlo simulations had a lowest RMSE (0.03) among the four methods. In regions that have similar climatic and soil conditions to our study area, a linear regression model with HYDRUS Monte Carlo simulations is a practical method for root-zone moisture estimation before sowing and it can be easily coupled with remote sensing technology.

Author(s):  
M. Entezari ◽  
A. Esmaeily ◽  
S. Niazmardi

Abstract. Soil moisture estimation is essential for optimal water and soil resources management. Surface soil moisture is an important variable in the natural water cycle, which plays an important role in the global equilibrium of water and energy due to its impact on hydrological, ecological and meteorological processes. Soil moisture changes due to the variability of soil characteristics, topography and vegetation in time and place. Soil moisture measurements are performed directly using in situ methods and indirect, by means of transfer functions or remote sensing. Since in-site measurements are usually costly and time-consuming in large areas, we can use methods such as remote sensing to estimate soil moisture at very large scales. The purpose of this study is to estimate soil moisture using surface temperature and vegetation indices for large areas. In this paper, ground temperature was calculated using Landsat-8 thermal band for Mashhad city and was used to estimate the soil moisture content of the study area. The results showed that urban areas had the highest temperature and less humidity at the time of imaging. For this purpose, using the LANDSAT 8 images, the indices were extracted and validated with soil moisture data. In this research, the study area was described and then, using the extracted indices, the estimated model was obtained. The results showed that there is a good correlation between surface soil moisture content with LST and NDVI indices (95%). The results of the verification of the soil moisture estimation model also showed that this model with a mean error of less than 0.001 can predict the surface moisture content, this small amount of error indicates the precision of the proposed model for estimating surface moisture.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5211
Author(s):  
Maedeh Farokhi ◽  
Farid Faridani ◽  
Rosa Lasaponara ◽  
Hossein Ansari ◽  
Alireza Faridhosseini

Root zone soil moisture (RZSM) is an essential variable for weather and hydrological prediction models. Satellite-based microwave observations have been frequently utilized for the estimation of surface soil moisture (SSM) at various spatio-temporal resolutions. Moreover, previous studies have shown that satellite-based SSM products, coupled with the soil moisture analytical relationship (SMAR) can estimate RZSM variations. However, satellite-based SSM products are of low-resolution, rendering the application of the above-mentioned approach for local and pointwise applications problematic. This study initially attempted to estimate SSM at a finer resolution (1 km) using a downscaling technique based on a linear equation between AMSR2 SM data (25 km) with three MODIS parameters (NDVI, LST, and Albedo); then used the downscaled SSM in the SMAR model to monitor the RZSM for Rafsanjan Plain (RP), Iran. The performance of the proposed method was evaluated by measuring the soil moisture profile at ten stations in RP. The results of this study revealed that the downscaled AMSR2 SM data had a higher accuracy in relation to the ground-based SSM data in terms of MAE (↓0.021), RMSE (↓0.02), and R (↑0.199) metrics. Moreover, the SMAR model was run using three different SSM input data with different spatial resolution: (a) ground-based SSM, (b) conventional AMSR2, and (c) downscaled AMSR2 products. The results showed that while the SMAR model itself was capable of estimating RZSM from the variation of ground-based SSM data, its performance increased when using downscaled SSM data suggesting the potential benefits of proposed method in different hydrological applications.


2016 ◽  
Vol 20 (12) ◽  
pp. 4895-4911 ◽  
Author(s):  
Gabriëlle J. M. De Lannoy ◽  
Rolf H. Reichle

Abstract. Three different data products from the Soil Moisture Ocean Salinity (SMOS) mission are assimilated separately into the Goddard Earth Observing System Model, version 5 (GEOS-5) to improve estimates of surface and root-zone soil moisture. The first product consists of multi-angle, dual-polarization brightness temperature (Tb) observations at the bottom of the atmosphere extracted from Level 1 data. The second product is a derived SMOS Tb product that mimics the data at a 40° incidence angle from the Soil Moisture Active Passive (SMAP) mission. The third product is the operational SMOS Level 2 surface soil moisture (SM) retrieval product. The assimilation system uses a spatially distributed ensemble Kalman filter (EnKF) with seasonally varying climatological bias mitigation for Tb assimilation, whereas a time-invariant cumulative density function matching is used for SM retrieval assimilation. All assimilation experiments improve the soil moisture estimates compared to model-only simulations in terms of unbiased root-mean-square differences and anomaly correlations during the period from 1 July 2010 to 1 May 2015 and for 187 sites across the US. Especially in areas where the satellite data are most sensitive to surface soil moisture, large skill improvements (e.g., an increase in the anomaly correlation by 0.1) are found in the surface soil moisture. The domain-average surface and root-zone skill metrics are similar among the various assimilation experiments, but large differences in skill are found locally. The observation-minus-forecast residuals and analysis increments reveal large differences in how the observations add value in the Tb and SM retrieval assimilation systems. The distinct patterns of these diagnostics in the two systems reflect observation and model errors patterns that are not well captured in the assigned EnKF error parameters. Consequently, a localized optimization of the EnKF error parameters is needed to further improve Tb or SM retrieval assimilation.


2008 ◽  
Vol 12 (6) ◽  
pp. 1323-1337 ◽  
Author(s):  
C. Albergel ◽  
C. Rüdiger ◽  
T. Pellarin ◽  
J.-C. Calvet ◽  
N. Fritz ◽  
...  

Abstract. A long term data acquisition effort of profile soil moisture is under way in southwestern France at 13 automated weather stations. This ground network was developed in order to validate remote sensing and model soil moisture estimates. In this paper, both those in situ observations and a synthetic data set covering continental France are used to test a simple method to retrieve root zone soil moisture from a time series of surface soil moisture information. A recursive exponential filter equation using a time constant, T, is used to compute a soil water index. The Nash and Sutcliff coefficient is used as a criterion to optimise the T parameter for each ground station and for each model pixel of the synthetic data set. In general, the soil water indices derived from the surface soil moisture observations and simulations agree well with the reference root-zone soil moisture. Overall, the results show the potential of the exponential filter equation and of its recursive formulation to derive a soil water index from surface soil moisture estimates. This paper further investigates the correlation of the time scale parameter T with soil properties and climate conditions. While no significant relationship could be determined between T and the main soil properties (clay and sand fractions, bulk density and organic matter content), the modelled spatial variability and the observed inter-annual variability of T suggest that a weak climate effect may exist.


Author(s):  
George Petropoulos ◽  
Hywel Griffiths ◽  
Wouter Dorigo ◽  
Angelika Xaver ◽  
Alexander Gruber

Sign in / Sign up

Export Citation Format

Share Document