scholarly journals Effect of magnesium sulfate on the electrochemical behavior of lead electrodes for lead acid batteries

2018 ◽  
Vol 4 (1) ◽  
pp. 55-59 ◽  
Author(s):  
M. Venkateswarlu ◽  
T. Balusamy ◽  
K. S. N. Murthy ◽  
M. Jagadish ◽  
S. Vijayanand

AbstractThe lead acid battery technology has undergone several modifications in the recent past, in particular, the electrode grid composition, oxide paste recipe with incorporation of foreign additives into the electrodes and similarly additives added in the electrolytes to improve electrical performance of the lead acid battery. In this paper, the electrochemical behavior of the lead electrodes with different weight/volume percentages (wt./v%) of MgSO4(0.0., 0.5., 1.0., 2.0., and 5.0) added into the electrolyte have been investigated with cyclic voltammetry (CV), linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS). The CV profile showed better redox behavior of the lead electrodes which was attributed to the increased active surface area of the electrode. Further studies of the gas evolution found a mixed trend and a considerable drop in the impedance as observed by LSV and EIS analysis as compared to the blank electrolyte solution. The influence of a modified electrolyte on the electrochemical activity of the lead electrodes is correlated and discussed.

2021 ◽  
Vol 11 (14) ◽  
pp. 6357
Author(s):  
Roberto Luigi Oliveri ◽  
Maria Grazia Insinga ◽  
Simone Pisana ◽  
Bernardo Patella ◽  
Giuseppe Aiello ◽  
...  

Lead-acid batteries are now widely used for energy storage, as result of an established and reliable technology. In the last decade, several studies have been carried out to improve the performance of this type of batteries, with the main objective to replace the conventional plates with innovative electrodes with improved stability, increased capacity and a larger active surface. Such studies ultimately aim to improve the kinetics of electrochemical conversion reactions at the electrode-solution interface and to guarantee a good electrical continuity during the repeated charge/discharge cycles. To achieve these objectives, our contribution focuses on the employment of nanostructured electrodes. In particular, we have obtained nanostructured electrodes in Pb and PbO2 through electrosynthesis in a template consisting of a nanoporous polycarbonate membrane. These electrodes are characterized by a wider active surface area, which allows for a better use of the active material, and for a consequent increased specific energy compared to traditional batteries. In this research, the performance of lead-acid batteries with nanostructured electrodes was studied at 10 C at temperatures of 25, −20 and 40 °C in order to evaluate the efficiency and the effect of temperature on electrode morphology. The batteries were assembled using both nanostructured electrodes and an AGM-type separator used in commercial batteries.


2011 ◽  
Vol 399-401 ◽  
pp. 1926-1931 ◽  
Author(s):  
Yi Wang ◽  
Gang Chen ◽  
Wei Dong Liu ◽  
Qiong Yu Zhou ◽  
Qing Dong Zhong

Fe + Si coatings were prepared by iron deposition from a bath containing a suspension of silicon powders. These coatings were obtained at galvanostatic conditions, at the current density of jdep=−0.020 A cm−2 and at the temperature of 338 K. For determination of the influence of phase composition and surface morphology of these coatings on changes in the corrosion resistance, these coatings were modified in an argon atmosphere by thermal treatment at 873 K for 2h. A scanning electron microscope was used for surface morphology characterization of the coatings. The chemical composition of the coatings was determined by EDS and phase composition investigations were conducted by X-ray diffraction. It was found that the as-deposited coatings consist of a two-phase structure, i.e., iron and silicon. The phase composition for the Fe + Si coatings after thermal treatment is markedly different. The main peaks corresponding to Fe and Si coexist with the new phases: FeSi. Electrochemical corrosion resistance investigations were carried out in 3.5wt% NaCl, using potentiodynamic and electrochemical impedance spectroscopy (EIS) methods. On the basis of these investigations it was found that the Fe + Si coatings after thermal treatment are more corrosion resistant in 3.5wt% NaCl solution than the as-deposited coatings. The reasons for this are a reduction in the amount of free iron and silicon, the presence of new phases (in particular silicides), and a decrease of the active surface area of the coatings after thermal treatment.


Author(s):  
Aránzazu Barrio ◽  
Javier Parrondo ◽  
Jose Ignacio Lombraña ◽  
Maria Uresandi ◽  
Federico Mijangos

Proton-exchange membrane fuel cells (PEMFC) are regarded as a possible alternative power source for stationary and mobile applications. Due to the catalyst costs, many researchers have been studying the membrane and the electrode assembly (MEA) manufacturing processes that can reduce the content of Pt in the electrocatalyst layer while maintaining the performance. The MEA is the heart of the PEMFC and the catalyst plays an important role in the fuel cell operation.There are different methods to prepare MEA. In this work, the catalyst ink was straightly applied on the gas diffusion layer (GDL) by an aerograph. Then, this electrode was assembled to the membrane by hot press.From the point of view of operation, the main variables are: temperature, pressure and time of press. Operational range was established from previous experiments to find roughly the optimal conditions. Finally, these MEAs were tested in a 5 cm2 PEMFC. The operational temperature was 30°C. Due to higher temperatures it was difficult to keep the humidity of the membrane constant. The operational pressure and flow were constant throughout the experiments. Different techniques to characterize the MEAs, linear sweep voltammetry and cyclic voltammetry were applied. With these techniques the permeation of hydrogen and the electrochemically active surface area of electrode catalyst were determined.With the results obtained in the experiments, the optimal values of the fabrication parameters were established.


2006 ◽  
Vol 157 (1) ◽  
pp. 3-10 ◽  
Author(s):  
P.T. Moseley ◽  
R.F. Nelson ◽  
A.F. Hollenkamp

Sign in / Sign up

Export Citation Format

Share Document