scholarly journals The first diffusion of the Covid-19 outbreak in Northern Italy: an analysis based on a simplified version of the SIR model

2021 ◽  
Vol 10 (s1) ◽  
Author(s):  
Mauro Magnoni

Abstract In this paper an analysis of the first diffusion of the Covid-19 outbreak occurred in late February 2020 in Northern Italy is presented. In order to study the time evolution of the epidemic it was decided to analyze in particular as the most relevant variable the number of hospitalized people, considered as the less biased proxy of the real number of infected people. An approximate solution of the infected equation was found from a simplified version of the SIR model. This solution was used as a tool for the calculation of the basic reproduction number R 0 in the early phase of the epidemic for the most affected Northern Italian regions (Piedmont, Lombardy, Veneto and Emilia), giving values of R 0 ranging from 2.2 to 3.1. Finally, a theoretical formulation of the infection rate is proposed, introducing a new parameter, the infection length, characteristic of the disease.

2020 ◽  
Author(s):  
Maurizio Melis ◽  
Roberto Littera

Background. A crucial role in epidemics is played by the number of undetected infective individuals who continue to circulate and spread the disease. Epidemiological investigations and mathematical models have revealed that the rapid diffusion of Covid-19 can mostly be attributed to the large percentage of undocumented infective individuals who escape testing. Methods. The dynamics of an infection can be described by the SIR model, which divides the population into susceptible (S), infective (I) and removed (R) subjects. In particular, we exploited the Kermack and McKendrick epidemic model which can be applied when the population is much larger than the fraction of infected subjects. Results. We proved that the fraction of undocumented infectives, in comparison to the total number of infected subjects, is given by 1-1/R0 , where R0 is the basic reproduction number. The mean value R0=2.10 (2.09-2.11) in three Italian regions for the Covid-19 epidemic yielded a percentage of undetected infectives of 52.4% (52.2% - 52.6%) compared to the total number of infectives. Conclusions. Our results, straightforwardly obtained from the SIR model, highlight the role played by undetected carriers in the transmission and spread of the SARS-CoV-2 infection. Such evidence strongly recommends careful monitoring of the infective population and ongoing adjustment of preventive measures for disease control until a vaccine becomes available.


J ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 86-100
Author(s):  
Nita H. Shah ◽  
Ankush H. Suthar ◽  
Ekta N. Jayswal ◽  
Ankit Sikarwar

In this article, a time-dependent susceptible-infected-recovered (SIR) model is constructed to investigate the transmission rate of COVID-19 in various regions of India. The model included the fundamental parameters on which the transmission rate of the infection is dependent, like the population density, contact rate, recovery rate, and intensity of the infection in the respective region. Looking at the great diversity in different geographic locations in India, we determined to calculate the basic reproduction number for all Indian districts based on the COVID-19 data till 7 July 2020. By preparing district-wise spatial distribution maps with the help of ArcGIS 10.2, the model was employed to show the effect of complete lockdown on the transmission rate of the COVID-19 infection in Indian districts. Moreover, with the model's transformation to the fractional ordered dynamical system, we found that the nature of the proposed SIR model is different for the different order of the systems. The sensitivity analysis of the basic reproduction number is done graphically which forecasts the change in the transmission rate of COVID-19 infection with change in different parameters. In the numerical simulation section, oscillations and variations in the model compartments are shown for two different situations, with and without lockdown.


Author(s):  
I. F. F. Dos Santos ◽  
G. M. A. Almeida ◽  
F. A. B. F. De Moura

We investigate the spreading of SARS-CoV-2 in the state of Alagoas, northeast of Brazil, via an adaptive susceptible-infected-removed (SIR) model featuring dynamic recuperation and propagation rates. Input parameters are defined based on data made available by Alagoas Secretary of Health from April 19, 2020 on. We provide with the evolution of the basic reproduction number [Formula: see text] and reproduce the historical series of the number of confirmed cases with less than [Formula: see text] error. We offer predictions, from November 16 forward, over the epidemic situation in the near future and show that it will keep decelerating. Furthermore, the same model can be used to study the epidemic dynamics in other countries with great easiness and accuracy.


2020 ◽  
Author(s):  
Narayanan C. Viswanath

AbstractIts spreading speed together with the risk of fatality might be the main characteristic that separates COVID-19 from other infectious diseases in our recent history. In this scenario, mathematical modeling for predicting the spread of the disease could have great value in containing the disease. Several very recent papers have contributed to this purpose. In this study we propose a birth-and-death model for predicting the number of COVID-19 active cases. It relation to the Susceptible-Infected-Recovered (SIR) model has been discussed. An explicit expression for the expected number of active cases helps us to identify a stationary point on the infection curve, where the infection ceases increasing. Parameters of the model are estimated by fitting the expressions for active and total reported cases simultaneously. We analyzed the movement of the stationary point and the basic reproduction number during the infection period up to the 20th of April 2020. These provide information about the disease progression path and therefore could be really useful in designing containment strategies.


Author(s):  
Rinaldo M Colombo ◽  
Mauro Garavello ◽  
Francesca Marcellini ◽  
Elena Rossi

We present an epidemic model capable of describing key features of the present Covid-19 pandemic. While capturing several qualitative properties of the virus spreading, it allows to compute the basic reproduction number, the number of deaths due to the virus and various other statistics. Numerical integrations are used to illustrate the relevance of quarantine and the role of care houses.


2020 ◽  
Vol 31 (10) ◽  
pp. 2050140
Author(s):  
Md. Enamul Hoque

The Susceptible, Infected and Recover (SIR) model is a very simple model to estimate the dynamics of an epidemic. In the current pandemic due to Covid-19, the SIR model has been used to estimate the dynamics of infection for Bangladesh, India, Pakistan and compared with that of China. Numerical solutions are used to obtain the value of parameters for the SIR model. It is predicted that the active case in Pakistan due to the SARS-CoV-2 will be comparable with that in China whereas it will be low for Bangladesh and India. The basic reproduction number, with fluctuations, for South Asian countries are predicted to be less than that of China. The susceptible population is also estimated to be under a million for Bangladesh and India but it becomes very large for Pakistan.


2007 ◽  
Vol 4 (16) ◽  
pp. 949-961 ◽  
Author(s):  
M.G Roberts

The concept of the basic reproduction number ( 0 ) occupies a central place in epidemic theory. The value of 0 determines the proportion of the population that becomes infected over the course of a (modelled) epidemic. In many models, (i) an endemic infection can persist only if 0 >1, (ii) the value of 0 provides a direct measure of the control effort required to eliminate the infection, and (iii) pathogens evolve to maximize their value of 0 . These three statements are not universally true. In this paper, some exceptions to them are discussed, based on the extensions of the SIR model.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
F. Talay Akyildiz ◽  
Fehaid Salem Alshammari

AbstractThis paper investigates a new model on coronavirus-19 disease (COVID-19), that is complex fractional SIR epidemic model with a nonstandard nonlinear incidence rate and a recovery, where derivative operator with Mittag-Leffler kernel in the Caputo sense (ABC). The model has two equilibrium points when the basic reproduction number $R_{0} > 1$ R 0 > 1 ; a disease-free equilibrium $E_{0}$ E 0 and a disease endemic equilibrium $E_{1}$ E 1 . The disease-free equilibrium stage is locally and globally asymptotically stable when the basic reproduction number $R_{0} <1$ R 0 < 1 , we show that the endemic equilibrium state is locally asymptotically stable if $R_{0} > 1$ R 0 > 1 . We also prove the existence and uniqueness of the solution for the Atangana–Baleanu SIR model by using a fixed-point method. Since the Atangana–Baleanu fractional derivative gives better precise results to the derivative with exponential kernel because of having fractional order, hence, it is a generalized form of the derivative with exponential kernel. The numerical simulations are explored for various values of the fractional order. Finally, the effect of the ABC fractional-order derivative on suspected and infected individuals carefully is examined and compared with the real data.


2018 ◽  
Vol 28 (1) ◽  
pp. 169-184 ◽  
Author(s):  
Dipo Aldila ◽  
Herningtyas Padma ◽  
Khusnul Khotimah ◽  
Bevina Desjwiandra ◽  
Hengki Tasman

AbstractA deterministic mathematical model of the Middle East respiratory syndrome (MERS) disease is introduced. Medical masks, supportive care treatment and a government campaign about the importance of medical masks will be involved in the model as time dependent variables. The problem is formulated as an optimal control one to minimize the number of infected people and keep the intervention costs as low as possible. Assuming that all control variables are constant, we find a disease free equilibrium point and an endemic equilibrium point explicitly. The existence and local stability criteria of these equilibria depend on the basic reproduction number. A sensitivity analysis of the basic reproduction number with respect to control parameters tells us that the intervention on medical mask use and the campaign about the importance of medical masks are much more effective for reducing the basic reproduction number than supportive care intervention. Numerical experiments for optimal control problems are presented for three different scenarios, i.e., a scenario of different initial conditions for the human population, a scenario of different initial basic reproduction numbers and a scenario of different budget limitations. Under budget limitations, it is much better to implement the medical mask intervention in the field, rather than give supportive care to control the spread of the MERS disease in the endemic prevention scenario. On the other hand, the medical mask intervention should be implemented partially together with supportive care to obtain the lowest number of infected people, with the lowest cost in the endemic reduction scenario.


Sign in / Sign up

Export Citation Format

Share Document