Sulfonated fluorinated-aromatic polymers as proton exchange membranes

e-Polymers ◽  
2014 ◽  
Vol 14 (4) ◽  
pp. 227-257 ◽  
Author(s):  
Anindita Ghosh ◽  
Susanta Banerjee

AbstractIn recent years, extensive research on the preparation and properties of proton exchange membranes (PEMs) has been realized. This article focusses on the recent studies on new PEM materials based on aromatic hydrocarbon polymers with sulfonated groups as hydrophilic domains and fluorinated groups as hydrophobic domains as alternatives to conventional perfluorinated polymers. It is necessary to improve the proton conductivity especially under low-humidity conditions and at high operating temperatures to break through the current aromatic PEM system. Hence, there is a need to develop new high-conductivity fuel cell ionomers with improved thermal, chemical, and electrochemical stability by designing a suitable polymer structure for PEM application.

Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1061 ◽  
Author(s):  
Raja Rafidah R. S. ◽  
Rashmi W. ◽  
Khalid M. ◽  
Wong W. Y. ◽  
Priyanka J.

Proton exchange membranes (PEMs) play a pivotal role in fuel cells; conducting protons from the anode to the cathode within the cell’s membrane electrode assembles (MEA) separates the reactant fuels and prevents electrons from passing through. High proton conductivity is the most important characteristic of the PEM, as this contributes to the performance and efficiency of the fuel cell. However, it is also important to take into account the membrane’s durability to ensure that it canmaintain itsperformance under the actual fuel cell’s operating conditions and serve a long lifetime. The current state-of-the-art Nafion membranes are limited due to their high cost, loss of conductivity at elevated temperatures due to dehydration, and fuel crossover. Alternatives to Nafion have become a well-researched topic in recent years. Aromatic-based membranes where the polymer chains are linked together by aromatic rings, alongside varying numbers of ether, ketone, or sulfone functionalities, imide, or benzimidazoles in their structures, are one of the alternatives that show great potential as PEMs due totheir electrochemical, mechanical, and thermal strengths. Membranes based on these polymers, such as poly(aryl ether ketones) (PAEKs) and polyimides (PIs), however, lack a sufficient level of proton conductivity and durability to be practical for use in fuel cells. Therefore, membrane modifications are necessary to overcome their drawbacks. This paper reviews the challenges associated with different types of aromatic-based PEMs, plus the recent approaches that have been adopted to enhance their properties and performance.


Polymer ◽  
2009 ◽  
Vol 50 (23) ◽  
pp. 5341-5357 ◽  
Author(s):  
Tomoya Higashihara ◽  
Kazuya Matsumoto ◽  
Mitsuru Ueda

Molecules ◽  
2019 ◽  
Vol 24 (19) ◽  
pp. 3425 ◽  
Author(s):  
Zhai ◽  
Li

As one of the most efficient pathways to provide clean energy, fuel cells have attracted great attention in both academic and industrial communities. Proton exchange membranes (PEMs) or proton-conducting electrolytes are the key components in fuel cell devices, which require the characteristics of high proton conductivity as well as high mechanical, chemical and thermal stabilities. Organic–inorganic hybrid PEMs can provide a fantastic platform to combine both advantages of two components to meet these demands. Due to their extremely high proton conductivity, good thermal stability and chemical adjustability, polyoxometalates (POMs) are regarded as promising building blocks for hybrid PEMs. In this review, we summarize a number of research works on the progress of POM–polymer hybrid materials and related applications in PEMs. Firstly, a brief background of POMs and their proton-conducting properties are introduced; then, the hybridization strategies of POMs with polymer moieties are discussed from the aspects of both noncovalent and covalent concepts; and finally, we focus on the performance of these hybrid materials in PEMs, especially the advances in the last five years. This review will provide a better understanding of the challenges and perspectives of POM–polymer hybrid PEMs for future fuel cell applications.


2015 ◽  
Vol 3 (31) ◽  
pp. 15838-15842 ◽  
Author(s):  
Lijia Yang ◽  
Beibei Tang ◽  
Peiyi Wu

Nafion based proton exchange membranes (PEMs) modified by a metal–organic framework–graphene oxide composite (ZIF-8@GO) are reported.


2016 ◽  
Vol 4 (6) ◽  
pp. 2321-2331 ◽  
Author(s):  
Tiandu Dong ◽  
Jiahui Hu ◽  
Mitsuru Ueda ◽  
Yiming Wu ◽  
Xuan Zhang ◽  
...  

A multi-block compositing graft concept is investigated to fabricate proton exchange membranes. The prepared membranes demonstrate excellent ion conductive capacity and better fuel cell performance over the entire relative humidity conditions, compared to Nafion.


2009 ◽  
Vol 421-422 ◽  
pp. 447-450 ◽  
Author(s):  
Debora Marani ◽  
S. Licoccia ◽  
Enrico Traversa ◽  
Masaru Miyayama

SPEEK-based composite membranes containing various amounts of titania nanosheets (TNS) as inorganic fillers were investigated for proton exchange membrane fuel cell applications. The samples were characterized for water uptake, proton conductivity (EIS), and structural features (SEM and XRD). Composites at low inorganic additive contents exhibited improved properties in terms of proton conductivity and water uptake behavior. Best improvements were observed for the composite containing only 0.95 wt% of TNS. This result could be associated to the unique nature of the two dimensional nanostructure of the inorganic additive.


2017 ◽  
Vol 523 ◽  
pp. 480-486 ◽  
Author(s):  
Min-Kyoon Ahn ◽  
Su-Bin Lee ◽  
Cheong-Min Min ◽  
Yong-Guen Yu ◽  
Joseph Jang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document