scholarly journals Poly(styrene/acrolein) and poly(styrene/α-tert-butoxy-ω- vinylbenzyl-polyglycidol) microspheres. Similarities and differences

e-Polymers ◽  
2002 ◽  
Vol 2 (1) ◽  
Author(s):  
Teresa Basinska

AbstractProperties of two types of polystyrene microspheres with polyacrolein and polyglycidol components in their surface layers are compared. Microspheres were prepared in batch radical emulsifier-free emulsion copolymerizations of styrene with acrolein and/or α-tert-butoxy-ω-vinylbenzyl-polyglycidol macromonomer ( Mn̅ = 2700). Polymerizations were initiated with potassium peroxodisulfate, and the ratio of initial concentrations of styrene and initiator was constant. Number average diameters of poly(styrene/acrolein) (P(S/A)) and of poly(styrene/polyglycidol) (P(S/PGL)) particles were in the range of 200 - 650 nm and decreased with increasing concentration of acrolein and/or polyglycidol in the polymerizing mixtures. The diameter polydispersity of synthesized particles ( Dw ̅ /Dn̅) was usually lower than 1.02. X-ray photoelectron spectroscopy for P(S/A) and P(S/PGL) microspheres showed that surface layers of particles were significantly enriched in polyacrolein or polyglycidol segments, surface fractions of which increased with increasing concentration of the more hydrophilic comonomer in the polymerizing mixture. In the case of P(S/A) particles, the maximal fraction of polyacrolein approached 80 mol-%, whereas for P(S/PGL) particles the maximal surface fraction of PGL was 42 mol-%. Human serum albumin was used as a model protein for studies of attachment onto P(S/A) and P(S/PGL) microspheres. It has been found that for both kinds of particles, the maximal surface concentration of attached (adsorbed and/or covalently immobilized) protein decreased with increasing fraction of hydrophilic component in the particle surface layer (polyacrolein or polyglycidol units). In the case of P(S/A) particles, adsorption always accompanied covalent immobilization of proteins. To the contrary, covalent immobilization of proteins onto the P(S/PGL) microspheres proceeded without adsorption of proteins.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jien Ye ◽  
Yi Wang ◽  
Qiao Xu ◽  
Hanxin Wu ◽  
Jianhao Tong ◽  
...  

AbstractPassivation of nanoscale zerovalent iron hinders its efficiency in water treatment, and loading another catalytic metal has been found to improve the efficiency significantly. In this study, Cu/Fe bimetallic nanoparticles were prepared by liquid-phase chemical reduction for removal of hexavalent chromium (Cr(VI)) from wastewater. Synthesized bimetallic nanoparticles were characterized by transmission electron microscopy, Brunauer–Emmet–Teller isotherm, and X-ray diffraction. The results showed that Cu loading can significantly enhance the removal efficiency of Cr(VI) by 29.3% to 84.0%, and the optimal Cu loading rate was 3% (wt%). The removal efficiency decreased with increasing initial pH and Cr(VI) concentration. The removal of Cr(VI) was better fitted by pseudo-second-order model than pseudo-first-order model. Thermodynamic analysis revealed that the Cr(VI) removal was spontaneous and endothermic, and the increase of reaction temperature facilitated the process. X-ray photoelectron spectroscopy (XPS) analysis indicated that Cr(VI) was completely reduced to Cr(III) and precipitated on the particle surface as hydroxylated Cr(OH)3 and CrxFe1−x(OH)3 coprecipitation. Our work could be beneficial for the application of iron-based nanomaterials in remediation of wastewater.


2000 ◽  
Vol 113 (20) ◽  
pp. 9233-9238 ◽  
Author(s):  
James N. O’Shea ◽  
Joachim Schnadt ◽  
Staffan Andersson ◽  
Luc Patthey ◽  
Steffen Rost ◽  
...  

Clay Minerals ◽  
1992 ◽  
Vol 27 (4) ◽  
pp. 413-421 ◽  
Author(s):  
M. Soma ◽  
G. J. Churchman ◽  
B. K. G. Theng

AbstractThe surface composition of some halloysites with different particle morphology has been investigated by X-ray photoelectron spectroscopy (XPS) before and after removal of external Fe. The Fe(III) 2p3/2 binding energy of external Fe is appreciably smaller than that of structural Fe. Particle morphology is influenced by structural Fe content. The long-tubular halloysite has very little surface Fe, and its concentration tends to increase with the proportion of non-tubular particles in the samples. The spheroidal sample contains the most structural Fe which, however, does not appear to influence particle shape directly. Study by XPS indicates that Fe substitutes for Al in octahedral positions in approximately 1 : 2 proportion. As a result, an increase in octahedral vacancies and cation exchange capacity would be predicted. Further, halloysite layers within a crystal are generally inhomogeneous in composition. Built up like “onion skins”, the surface layers would either be enriched or depleted in Fe depending on the chemical environment in which crystal growth occurs.


1979 ◽  
Vol 101 (2) ◽  
pp. 201-206 ◽  
Author(s):  
Y. Taga ◽  
K. Nakajima

The effects of phosphorus on the friction and wear characteristics of Cu-5 at. percent Sn-P alloys containing 1–5 at. percent P were studied using a pin on disc apparatus. The results showed that the decrease in both the coefficient of friction and the rate of wear became conspicuous with the increase in quantity of Cu3P coexisting in the matrix; its amount increases with the content of phosphorus. The structural changes in the surface of the specimen due to heating in a vacuum were observed by using Auger electron spectroscopy and X-ray photoelectron spectroscopy. It was seen that the surface concentration of phosphorus strongly increased after heating at 573K, whereas the diffusion of tin atoms was markedly retarded. It was concluded from these results that the behavior of phosphorus atoms in the surface during sliding played an important role in the friction and wear characteristics of Cu-Sn-P alloys.


1989 ◽  
Vol 55 (16) ◽  
pp. 1680-1682 ◽  
Author(s):  
C. C. Chang ◽  
M. S. Hegde ◽  
X. D. Wu ◽  
B. Dutta ◽  
A. Inam ◽  
...  

1995 ◽  
Vol 60 (3) ◽  
pp. 383-392 ◽  
Author(s):  
Zdeněk Bastl

The effects of ion bombardment and r.f. plasma oxidation of graphite surfaces on subsequent growth and electronic properties of vacuum deposited palladium clusters have been investigated by methods of X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy with X-ray excitation (XAES). Due to the significantly increased density of surface defects on which the nucleation process occurs the bulk value of the Pd 3d core level binding energy is achieved at higher surface coverage by palladium on bombarded surfaces than on ordered graphite. Angle resolved photoelectron spectra of oxidized graphite surfaces reveal significant embedding of oxygen in graphite surface layers. The C 1s and O 1s photoelectron spectra are consistent with presence of two major oxygen species involving C-O and C=O type linkages which are not homogeneously distributed within the graphite surface layers. Two effects were observed on oxidized surfaces: an increase of palladium dispersion and interaction of the metal clusters with surface oxygen groups. Using the simple interpretation of the modified Auger parameter the relaxation and chemical shift contributions to the measured Pd core level shifts are estimated. In the region of low surface coverage by palladium the effect of palladium-oxygen interaction on Pd core level binding energy exceeds the effects of increased dispersity.


2014 ◽  
Vol 56 (11) ◽  
pp. 2294-2306 ◽  
Author(s):  
E. P. Domashevskaya ◽  
A. V. Chernyshev ◽  
S. Yu. Turishchev ◽  
Yu. E. Kalinin ◽  
A. V. Sitnikov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document