Application of ionic liquid [bmim]PF6 as green plasticizer for poly(L-lactide)

e-Polymers ◽  
2008 ◽  
Vol 8 (1) ◽  
Author(s):  
Puyu Zhang ◽  
Lichao Peng ◽  
Wenbin Li

AbstractIonic liquid [bmim]PF6 (1-butyl-3-methylimidazolium hexafluoro phosphate) was synthesized and characterized. It was used as the plasticizer for poly(L-lactide) (PLLA). The glass transition temperature (Tg) and the thermal stability of the plasticized PLLA samples were measured by thermogravimetry (TG) and differential scanning calorimetry (DSC). Compared with poly(ethylene glycol) having Mw of 300 g/mol (PEG300), TG results showed that the thermal stability of PLLA plasticized with ionic liquid was better than that of PLLA plasticized with PEG300. The Tg of plasticized PLLA decrease with increasing the content of ionic liquid [bmim]PF6 from 2 wt.% to 10 wt.%. The Tg of PLLA can be reduced to 40°C when the content of ionic liquid [bmim]PF6 was 10 wt.%. The materials of PLLA with plasticizer were also investigated using polarizing microscope (POM), the results of which indicate that the movements of PLLA chains were improved when ionic liquid plasticizer was used.

Author(s):  
Arvind Kumar Verma ◽  
Anchal Srivastava ◽  
R. K Shukla ◽  
K. C Dubey

In the present research work melt quenching method has been adopted to prepare the glassy Te-rich (Te90Se10) and Se-rich (Se90Te10 ) Chalcogenide at a pressure of 10-2 Torr with constant Temperature at 1000°C for 8 hours. Devitrification characteristics of the pure glassy Chalcogenide Te90Se10 and Se90Te90 were investigated by using Differential scanning Calorimetry (DSC) 4000 Perkin Elmer. All the measurements carried out at fixed heating rate 10 0C/min under non-isothermal conditions. The Glass transition temperature (Tg) and other thermal properties were examined by temperature modulated differential scanning Calorimetry at 40 oC to 445 oC. Glass transition temperature (Tg) represents the strength or rigidity of the glass structure. Tg affords valuable information on the thermal stability of the glassy state but Tg alone does not give any information on the glass forming tendency. The difference of the Peak crystallization temperature (Tp) and Glass transition temperature (Tg) is a strong indication of the thermal stability. The higher the value of Tc and Tg the greater is the thermal stability. Glass transition temperature (Tg=2160C) of Tellurium rich (Te90Se10) is more than Glass transition temperature (Tg=730C) of Selenium rich (Se90Te90) due to semi metallic nature of Tellurium. The difference of (Tp-Tg) is a strong indicator of both the thermal stability and Glass forming ability (GFA). Higher the value of (Tp-Tg), higher is the thermal stability and GFA because higher values of this difference indicate more kinetic resistance to the crystallization. Glass forming ability (GFA) and thermal stability of Te90Se10 is greater than Se90Te90. For memory and switching materials, glass thermal stability and GFA parameters are very important. Intensity of Se-rich (Se90Te10) is more than Te-rich (Te90Se10) and both samples are polycrystalline in nature.


2018 ◽  
Vol 1 (1) ◽  
pp. 526-535
Author(s):  
Benaniba Mohamed Tahar ◽  
Aouachria Kamira

Blends of poly(lactic acid) (PLA) and poly(ethylene glycol) (PEG) with various contents (0, 5, 10, 15, 20 and 30 weight %) and with different molecular weights (M¯w = 1000, 4000 and 6000 g/mol), called respectively PEG1, PEG2, and PEG3 were prepared by melt blending. Since glass transition temperature (Tg), T? and loss factor (tan ?) are relevant indicators of polymer chain mobility, plasticization has been studied by dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC). Low molecular weight (LMW) PEG enable increased miscibility with PLA and more efficient reduction of glass transition temperature (Tg) for concentrations of PEG less than 20%. This effect is not only enhanced by the LMW but also by increasing its content up to 20%. As expected, both T? and Tg decrease when increasing PEG molar mass and content up to 20%, which demonstrates the effectiveness of PEG to act as a plasticizer of PLA.


2019 ◽  
Author(s):  
Andreas Boelke ◽  
Yulia A. Vlasenko ◽  
Mekhman S. Yusubov ◽  
Boris Nachtsheim ◽  
Pavel Postnikov

<p>The thermal stability of pseudocyclic and cyclic <i>N</i>-heterocycle-stabilized (hydroxy)aryl- and mesityl(aryl)-l<sup>3</sup>-iodanes (NHIs) through thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) is investigated. NHIs bearing <i>N</i>-heterocycles with a high N/C-ratio such as triazoles show among the lowest descomposition temperatures and the highest decomposition energies. A comparison of NHIs with known (pseudo)cyclic benziodoxolones is made and we further correlated their thermal stability with reactivity in a model oxygenation. </p>


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Nurul Fatahah Asyqin Zainal ◽  
Jean Marc Saiter ◽  
Suhaila Idayu Abdul Halim ◽  
Romain Lucas ◽  
Chin Han Chan

AbstractWe present an overview for the basic fundamental of thermal analysis, which is applicable for educational purposes, especially for lecturers at the universities, who may refer to the articles as the references to “teach” or to “lecture” to final year project students or young researchers who are working on their postgraduate projects. Description of basic instrumentation [i.e. differential scanning calorimetry (DSC) and thermogravimetry (TGA)] covers from what we should know about the instrument, calibration, baseline and samples’ signal. We also provide the step-by-step guides for the estimation of the glass transition temperature after DSC as well as examples and exercises are included, which are applicable for teaching activities. Glass transition temperature is an important property for commercial application of a polymeric material, e.g. packaging, automotive, etc. TGA is also highlighted where the analysis gives important thermal degradation information of a material to avoid sample decomposition during the DSC measurement. The step-by-step guides of the estimation of the activation energy after TGA based on Hoffman’s Arrhenius-like relationship are also provided.


2016 ◽  
Vol 13 (2) ◽  
pp. 221-234
Author(s):  
Baghdad Science Journal

Different polymers were prepared by condensation polymerization of sebacic anhydride and adipic anhydride with ethylene glycol and poly(ethylene glycol). Their number average molecular weights were determined by end group analysis. Then, they were grafted on the prepared phthalocyaninatocopper(II) compounds with the general formula (NH2)4PcCu(II) having amino groups of 3,3',3'',3'''- or 4,4',4'',4'''- positions. All prepared polymers, compounds, and phthalocyaninatocopper(II)-grafted polymers were characterized by FTIR. The sizing measurements were carried out in 3,3',3'',3'''- (NH2)4PcCu(II) and 4,4',4'',4'''- (NH2)4PcCu(II) compounds with and without grafting polymers. The results showed that the grafting process led to decreasing in particle size and increasing in surface area. The grafting process was reflected positively on the thermal degradation of 3,3',3'',3'''- (NH2)4PcCu(II) and 4,4',4'',4'''- (NH2)4PcCu(II) grafted polymers. They had higher thermal stability accompanied with higher char residue and T50% weight loss with 3,3',3'',3'''-(NH2)4PcCu(II) and their grafted polymers being the best.


Sign in / Sign up

Export Citation Format

Share Document