scholarly journals Square DRA feed for parabolic reflector antenna for satellite communication application

Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
P Soni Reddy ◽  
Rahul Mondal ◽  
Sushanta Sarkar ◽  
Debasree Chanda Sarkar ◽  
Partha Pratim Sarkar

Abstract A square dielectric resonator antenna (SDRA) offering high polarization purity as a feed for parabolic reflector antenna is presented in this paper. Three sequences of holes are strategically integrated into the SDRA to enhance the polarization purity of the desired mode by suppressing the cross-polarization (X-pol) generating higher order mode. A detailed study on the performance of the parabolic reflector antenna with the proposed SDRA feed is also performed. The composite structure provides low X-pol levels of −33 dB at the half-power beamwidth (HPBW) points and −35 dB at the 1 dB co-polarization region in the H-plane. The composite structure radiates in the broadside direction with a high gain of 26 dBi and radiation efficiency of 95%. The proposed SDRA is designed to operate at 3 GHz of the S-band. A prototype of the proposed design is fabricated and experimentally verified. A measured X-pol isolation of 39 dB at ±15% of HPBW (European Telecommunication Standards Institute [ETSI] standard for satellite communication) and 50 dB at boresight is obtained in the H-plane. The small size, light weight, stable radiation performance and high polarization purity offered by the proposed SDRA make it a suitable candidate for satellite communication application.

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Fei-Peng Lai ◽  
Lu-Wu Chang ◽  
Yen-Sheng Chen

A compact substrate integrated waveguide (SIW) antenna array that operates at 28 GHz and 38 GHz is proposed for fifth generation (5G) applications. The proposed array consists of four SIW cavities fabricated on one single layer of substrate. Each cavity implements a rhombic slot and a triangular-split-ring slot, resonating on TE101 and TE102 modes at 28 GHz and 38 GHz, respectively. In comparison with dual-band SIW antennas in the literature, the proposed configuration depicts a miniature footprint (28.7 × 30.8 mm2) without stacking substrates. To excite the four cavities with equal power, a broadband power divider that supports the propagation of TE10 mode is designed. Accordingly, the impedance bandwidths are 26.6–28.3 GHz and 36.8–38.9 GHz. The measured realized peak gain over the lower and higher bands is 9.3–10.9 dBi and 8.7–12.1 dBi, respectively. The measured half-power beam widths (HPBWs) at 28 GHz and 38 GHz are 20.7° and 15.0°, respectively. Considering these characteristics, including dual bands, high gain, narrow beam widths, miniaturization, and single layer, the proposed antenna array is a suitable candidate for millimeter-wave 5G communication systems with the flexibility in switching operating frequency bands against channel quality variations.


2017 ◽  
Vol 65 (4) ◽  
pp. 1589-1598 ◽  
Author(s):  
Alister Hosseini ◽  
Saman Kabiri ◽  
Franco De Flaviis

Frequenz ◽  
2019 ◽  
Vol 73 (3-4) ◽  
pp. 109-116
Author(s):  
Nipun K. Mishra ◽  
Soma Das ◽  
Dinesh K. Vishwakarma

Abstract In present work a wide band and high gain cylindrical dielectric resonator antenna working in X-band has been designed and validated experimentally. First the bandwidth of the antenna has been enhanced by placing the thin dielectric layer between antenna and feed network. Next gain of the antenna has been increased by placing a layer of high dielectric material at nearly λ/2 distance as superstrate. The proposed design with impedance bandwidth of 3 GHz and gain nearly 11dBi could be used in satellite communication and other wideband wireless applications operating in X-band.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Yu Zhai ◽  
Ding Xu ◽  
Yan Zhang

This paper presents a lightweight, cost-efficient, wideband, and high-gain 3D printed parabolic reflector antenna in the Ka-band. A 10 λ reflector is printed with polylactic acid- (PLA-) based material that is a biodegradable type of plastic, preferred in 3D printing. The reflecting surface is made up of multiple stacked layers of copper tape, thick enough to function as a reflecting surface (which is found 4 mm). A conical horn is used for the incident field. A center-fed method has been used to converge the energy in the broadside direction. The proposed antenna results measured a gain of 27.8 dBi, a side lobe level (SLL) of −22 dB, and a maximum of 61.2% aperture efficiency (at 30 GHz). A near-field analysis in terms of amplitude and phase has also been presented which authenticates the accurate spherical to planar wavefront transformation in the scattered field.


2019 ◽  
Vol 18 (1) ◽  
pp. 128-132 ◽  
Author(s):  
Byung Kuon Ahn ◽  
Hye-Won Jo ◽  
Jong-Sang Yoo ◽  
Jong-Won Yu ◽  
Han Lim Lee

Sign in / Sign up

Export Citation Format

Share Document