Wideband High Gain Cylindrical Dielectric Resonator Antenna for X-Band Applications

Frequenz ◽  
2019 ◽  
Vol 73 (3-4) ◽  
pp. 109-116
Author(s):  
Nipun K. Mishra ◽  
Soma Das ◽  
Dinesh K. Vishwakarma

Abstract In present work a wide band and high gain cylindrical dielectric resonator antenna working in X-band has been designed and validated experimentally. First the bandwidth of the antenna has been enhanced by placing the thin dielectric layer between antenna and feed network. Next gain of the antenna has been increased by placing a layer of high dielectric material at nearly λ/2 distance as superstrate. The proposed design with impedance bandwidth of 3 GHz and gain nearly 11dBi could be used in satellite communication and other wideband wireless applications operating in X-band.

2021 ◽  
Author(s):  
SACHIN KUMAR YADAV ◽  
Amanpreet Kaur ◽  
Rajesh Khanna

Abstract A circularly polarized hollow dielectric resonator antenna (CPHDRA) is designed for X-band applications. Rectangular dielectric resonator (RDR) is used as a radiator element, fed by a quarter-wave transformer (QWT) feedline. By performance of the RDR antenna, an air cylindrical rod structure is extracted from RDR to enhance the gain and impedance bandwidth. Two parasitic strips are placed on the top of the RDR to achieve circular polarization with reported ≤ 3-dB axial ratio (AR) bandwidth for X-band applications. In this article, UWB antenna covers range from 2.74 to 10.4GHz by using asymmetrical defective ground structure (DGS). In near field of the dielectric resonator, three different radiating modes namely HE11δ, HE21δ, HE23δ, and HE32δ are at 4.4, 6, 8.8, and 9.9 GHz. For the generation of circular polarization (CP), two orthogonal modes are generated at 8.8 and 9.9 GHz as per XZ and YZ planes. It has reported 23.8 % (8 to 10.1 GHz) of 3-dB AR bandwidth. The simulated and measured impedance bandwidths are 118.46 % and 121.12 % along with a peak gain of 6.55 dB without the use of a metallic reflector. By using a metallic reflector suspended in the bottom side of the substrate with a distance of 13.1mm is reported along with the peak gain of 9.8 dBi.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Sounik Kiran Kumar Dash ◽  
Taimoor Khan ◽  
Binod Kumar Kanaujia ◽  
N. Nasimuddin

A wideband and high gain dielectric resonator antenna (DRA) operating in hybrid HEM11δ mode is proposed. The investigated geometry employs one cylindrical dielectric resonator partially covered with a transparent dielectric superstrate and backed up by a single side metal coated dielectric reflector plane. The reflector is dedicated for gain enhancement while the superstrate is employed for merging of two resonant bands resulting in a single wide band. The dielectric resonator is excited by simple microstrip feed slot coupling technique and operates over X-band, ranging from 7.12 GHz to 8.29 GHz, that is, of 15.18% impedance matching bandwidth with 11.34 dBi peak gain. The different development stages like standalone DRA, DRA with superstrate, DRA with reflector, and DRA with both superstrate and reflector plane with respect to bandwidth and gain performances are analyzed properly. To the best of authors’ knowledge, this is the first time this type of combination of both superstrate and reflector plane is demonstrated in DRA engineering. An antenna prototype was fabricated and characterized and a very good agreement is achieved between the simulated and measured results.


2019 ◽  
Vol 8 (3) ◽  
pp. 1047-1052
Author(s):  
Irfan Ali ◽  
Mohd Haizal Jamaluddin ◽  
M. R. Kamarudin ◽  
Abinash Gaya ◽  
R. Selvaraju

In this paper, wideband high gain dielectric resonator antenna for 5G applications is presented. Higher order mode is exploited to enhance the antenna gain, while the array of symmetrical cylindrical shaped holes drilled in the DRA to improves the bandwidth by reducing the quality factor. The proposed DRA is designed using dielectric material with relative permittivity of 10 and loss tangent of 0. 002.The Rogers RT/Droid 5880 has been selected as substrate with relative permittivity of 2.2, loss tangent of 0.0009- and 0.254-mm thickness. The simulated results show that, the proposed geometry has achieved a wide impedance bandwidth of 17.3% (23.8-28.3GHz=4.5 GHz) for S11-10 dB, and a maximum gain of about 9.3 dBi with radiation efficiency of 96% at design frequency of 26 GHz.  The DRA is feed by  microstrip transmission line with slot aperture. The reflection coefficient, the radiation pattern, and the antenna gain are studied by full-wave EM simulator CST Microwave Studio. The proposed antenna can be used for the 5G communication applications such as device to device communication (D2D).


This paper presents a novel, compact Ultra Wide Band , Asymmetric Ring Rectangular Dielectric Resonator Antenna (ARRDRA), which is a unique combination of Thin Dielectric Resonator (DR), Fork shape patch and defective ground structure. The base of the proposed antenna is its Hybrid structure, which generates fundamental TM, TE and higher order modes that yields an impedance bandwidth of 119%. Proposed antenna provides a frequency range from 4.2 to 16.6 GHz with a stable radiation pattern and low cross polarization levels. Peak gain of 5.5 dB and average efficiency of 90% is obtained by the design. Antenna is elongated on a FR4 substrate of dimension 20 x 24x 2.168 mm3 and is particularly suitable for C band INSAT, Radio Altimeter, WLAN, Wi-Fi for high frequencies. Ease in fabrication due to simplicity, compactness, stable radiation pattern throughout the entire bandwidth are the key features of the presented design. Inclusion of Defective ground structure and asymmetric ring not only increases the bandwidth but also stabilize the gain and efficiency due to less surface current. Presented design launch an Ultra Wide Band antenna with sufficient band rejection at 4.48-5.34 and 5.64-8.33 GHz with stable radiation pattern and high gain.


Frequenz ◽  
2014 ◽  
Vol 0 (0) ◽  
Author(s):  
Arshad Mehmood ◽  
Yuliang Zheng ◽  
Hubertus Braun ◽  
Martun Hovhannisyan ◽  
Martin Letz ◽  
...  

AbstractThis paper presents the application of new high permittivity and low loss glass material for antennas. This glass material is transparent. A very simple rectangular dielectric resonator antenna is designed first with a simple microstrip feeding line. In order to widen the bandwidth, the feed of the design is modified by forming a T-shaped feeding. This new design enhanced the bandwidth range to cover the WLAN 5 GHz band completely. The dielectric resonator antenna cut into precise dimensions is placed on the modified microstrip feed line. The design is simple and easy to manufacture and also very compact in size of only 36 × 28 mm. A −10 dB impedance bandwidth of 18% has been achieved, which covers the frequency range from 5.15 GHz to 5.95 GHz. Simulations of the measured return loss and radiation patterns are presented and discussed.


A dual frequency Dielectric Resonator antenna for wireless communication applications in the S and C bands with an operating frequency of 2.65GHz and 4.62GHz is presented. The patch is a dielectric material with a high dielectric constant value of 20. A 50Ω strip line is considered as feed and is coupled to the dielectric radiator via the rectangular slot etched in ground plane. The slot etched in ground plane is made so as to facilitate the power form the feed line to the radiator. The overall dimension of the antenna is 100mm×35mm×0.8mm. A dual frequency antenna has been proposed which will be operational at the frequencies of 2.65GHz and 4.62GHz with a gain of 4.42dB and 7.78dB respectively. Low cost FR4 material is been used as the laminate base for the antenna which will act as the dielectric material.


2021 ◽  
Vol 25 (1) ◽  
pp. 11-19
Author(s):  
Mohamed Debab ◽  
◽  
Amina Bendaoudi ◽  
Zoubir Mahdjoub ◽  
◽  
...  

In this article, a dual-band notched ultra-wideband (UWB) dielectric resonator antenna is proposed. The antenna structure consists of Crescent Moon Dielectric Resonator (CMDR) fed by a stepped microstrip monopole printed antenna, partial ground plane, and an I-shaped stub. The Crescent Moon dielectric resonator is placed on the microstrip monopole printed antenna to achieve wide impedance bandwidth, and the I-shaped stub is utilized to improve impedance bandwidth for the WiMAX band. A comprehensive parametric study is carried out using HFSS software to achieve the optimum antenna performance and optimize the bandwidth of the proposed antenna. The entire band is useful with two filtered bands at 5.5 GHz and 6.8 GHz by the creation of notches. The band’s rejection, WLAN band (5.2–5.7 GHz), and the downlink frequency band of ITU 7 GHz-band for satellite communication (6.5–7.3 GHz) is realized by inserting G-shaped and C-shaped slots in the ground. The simulation results demonstrate that the proposed CMDR antenna achieves satisfactory UWB performance, with an impedance bandwidth of around 88.7%, covers the frequency band of 3.2 - 8.3 GHz, excluding a rejection band for the WLAN and ITU 7 GHz band. The CMDR is simulated using HFSS and CST high-frequency simulators.


Electronics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1204 ◽  
Author(s):  
Sachin Kumar ◽  
Gwan Hui Lee ◽  
Dong Hwi Kim ◽  
Nashuha Syifa Haunan ◽  
Hyun Chul Choi ◽  
...  

A compact-sized planar super-wideband (SWB) monopole antenna with four notched bands is presented in this paper. The antenna consists of a rectangular ground plane and a circular radiator that is fed by a tapered microstrip feed line. The overall size of the antenna is 18 mm × 12 mm × 0.5 mm, and its impedance bandwidth (S11 ≤ −10 dB) ranges from 2.5 GHz to 40 GHz (bandwidth ratio of 16:1). Four notched bands are obtained using two inverted U-shaped slots, a split-ring resonator (SRR), and a meandered slot. The notched frequency bands can be adjustable by changing the parameters of parasitic slot elements, and the realized notched bands in this paper are Wi-MAX band (3.5 GHz), WLAN band (5.5 GHz), satellite communication X-band (7.5 GHz), and amateur radio band (10.5 GHz). The simulated and experimental results show good agreement with each other. The antenna possesses a high gain, super-wide impedance bandwidth, and omni-directional radiation patterns.


Sign in / Sign up

Export Citation Format

Share Document