The Cauchy–Nicoletti Problem with Poles

1995 ◽  
Vol 2 (2) ◽  
pp. 211-224
Author(s):  
T. Werner

Abstract The Cauchy–Nicoletti boundary value problem for a system of ordinary differential equations with pole-type singularities is investigated. The conditions of the existence, uniqueness, and non-uniqueness of a solution in the class of continuously differentiable functions are given. The classical Banach contraction principle is combined with a special transformation of the original problem.

2021 ◽  
Vol 11 (11) ◽  
pp. 4798
Author(s):  
Hari Mohan Srivastava ◽  
Sotiris K. Ntouyas ◽  
Mona Alsulami ◽  
Ahmed Alsaedi ◽  
Bashir Ahmad

The main object of this paper is to investigate the existence of solutions for a self-adjoint coupled system of nonlinear second-order ordinary differential equations equipped with nonlocal multi-point coupled boundary conditions on an arbitrary domain. We apply the Leray–Schauder alternative, the Schauder fixed point theorem and the Banach contraction mapping principle in order to derive the main results, which are then well-illustrated with the aid of several examples. Some potential directions for related further researches are also indicated.


2016 ◽  
Vol 23 (4) ◽  
pp. 571-577
Author(s):  
Monika Dosoudilová ◽  
Alexander Lomtatidze

AbstractAn efficient condition is established ensuring that on any interval of length ω, any nontrivial solution of the equation ${u^{\prime\prime}=p(t)u}$ has at most one zero. Based on this result, the unique solvability of a periodic boundary value problem is studied.


1988 ◽  
Vol 31 (1) ◽  
pp. 79-84
Author(s):  
P. W. Eloe ◽  
P. L. Saintignon

AbstractLet I = [a, b] ⊆ R and let L be an nth order linear differential operator defined on Cn(I). Let 2 ≦ k ≦ n and let a ≦ x1 < x2 < … < xn = b. A method of forced mono tonicity is used to construct monotone sequences that converge to solutions of the conjugate type boundary value problem (BVP) Ly = f(x, y),y(i-1) = rij where 1 ≦i ≦ mj, 1 ≦ j ≦ k, mj = n, and f : I X R → R is continuous. A comparison theorem is employed and the method requires that the Green's function of an associated BVP satisfies certain sign conditions.


1949 ◽  
Vol 1 (4) ◽  
pp. 379-396 ◽  
Author(s):  
G. F. D. Duff

The eigenfunctions of a boundary value problem are characterized by two quite distinct properties. They are solutions of ordinary differential equations, and they satisfy prescribed boundary conditions. It is a definite advantage to combine these two requirements into a single problem expressed by a unified formula. The use of integral equations is an example in point. The subject of this paper, namely the Schrödinger-Infeld Factorization Method, which is applicable to certain restricted. Sturm-Liouville problems, is based upon another combination of the two properties. The Factorization Method prescribes a manufacturing process.


Author(s):  
A. Cañada ◽  
R. Ortega

SynopsisThe existence of solutions to equations in normed spaces is proved when the nonlinear part of the equation satisfies growth and asymptotic conditions, whether the linear part is invertible or not. For this, we use the coincidence degree theory developed by Mawhin. We apply our abstract results to boundary value problems for nonlinear vector ordinary differential equations. In particular, we consider the Picard boundary value problem at the first eigenvalue and the periodic boundary value problem at resonance. In both cases, the nonlinear term can be of superlinear type. Also, necessary and sufficient conditions of Landesman-Lazer type are obtained.


2009 ◽  
Vol 139 (5) ◽  
pp. 1017-1035 ◽  
Author(s):  
Ch. G. Philos

This article is devoted to the study of the existence of solutions as well as the existence and uniqueness of solutions to a boundary-value problem on the half-line for higher-order nonlinear ordinary differential equations. An existence result is obtained by the use of the Schauder–Tikhonov theorem. Furthermore, an existence and uniqueness criterion is established using the Banach contraction principle. These two results are applied, in particular, to the specific class of higher-order nonlinear ordinary differential equations of Emden–Fowler type and to the special case of higher-order linear ordinary differential equations, respectively. Moreover, some (general or specific) examples demonstrating the applicability of our results are given.


Sign in / Sign up

Export Citation Format

Share Document