Oscillation of Higher Order Delay Differential Equations of Neutral Type

2000 ◽  
Vol 7 (2) ◽  
pp. 347-353 ◽  
Author(s):  
Wei Nian Li

Abstract The properties of solutions of higher order neutral differential equations with distributed type deviating arguments are obtained.

2014 ◽  
Vol 30 (3) ◽  
pp. 293-300
Author(s):  
J. DZURINA ◽  
◽  
B. BACULIKOVA ◽  

In the paper we offer oscillation criteria for even-order neutral differential equations, where z(t) = x(t) + p(t)x(τ(t)). Establishing a generalization of Philos and Staikos lemma, we introduce new comparison principles for reducing the examination of the properties of the higher order differential equation onto oscillation of the first order delay differential equations. The results obtained are easily verifiable.


2009 ◽  
Vol 52 (1) ◽  
pp. 107-114 ◽  
Author(s):  
BAŞAK KARPUZ ◽  
ÖZKAN ÖCALAN ◽  
SERMIN ÖZTÜRK

AbstractIn this work, oscillatory and asymptotic behaviours of all solutions of higher-order neutral differential equations are compared with first-order delay differential equations, depending on two different ranges of the coefficient associated with the neutral part. Some simple examples are given to compare our results with the existing results in the literature and to illustrate the significance and applicability of our new results. Our results generalise, improve and correct some of the existing results in the literature.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 318
Author(s):  
Osama Moaaz ◽  
Amany Nabih ◽  
Hammad Alotaibi ◽  
Y. S. Hamed

In this paper, we establish new sufficient conditions for the oscillation of solutions of a class of second-order delay differential equations with a mixed neutral term, which are under the non-canonical condition. The results obtained complement and simplify some known results in the relevant literature. Example illustrating the results is included.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Omar Bazighifan ◽  
Alanoud Almutairi

AbstractIn this paper, we study the oscillation of a class of fourth-order Emden–Fowler delay differential equations with neutral term. Using the Riccati transformation and comparison method, we establish several new oscillation conditions. These new conditions complement a number of results in the literature. We give examples to illustrate our main results.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1159
Author(s):  
Shyam Sundar Santra ◽  
Omar Bazighifan ◽  
Mihai Postolache

In continuous applications in electrodynamics, neural networks, quantum mechanics, electromagnetism, and the field of time symmetric, fluid dynamics, neutral differential equations appear when modeling many problems and phenomena. Therefore, it is interesting to study the qualitative behavior of solutions of such equations. In this study, we obtained some new sufficient conditions for oscillations to the solutions of a second-order delay differential equations with sub-linear neutral terms. The results obtained improve and complement the relevant results in the literature. Finally, we show an example to validate the main results, and an open problem is included.


2004 ◽  
Vol 1 (2) ◽  
pp. 347-349 ◽  
Author(s):  
Baghdad Science Journal

The author obtain results on the asymptotic behavior of the nonoscillatory solutions of first order nonlinear neutral differential equations. Keywords. Neutral differential equations, Oscillatory and Nonoscillatory solutions.


2007 ◽  
Vol 4 (3) ◽  
pp. 485-490
Author(s):  
Baghdad Science Journal

In this paper, the author established some new integral conditions for the oscillation of all solutions of nonlinear first order neutral delay differential equations. Examples are inserted to illustrate the results.


1996 ◽  
Vol 48 (4) ◽  
pp. 871-886 ◽  
Author(s):  
Horng-Jaan Li ◽  
Wei-Ling Liu

AbstractSome oscillation criteria are given for the second order neutral delay differential equationwhere τ and σ are nonnegative constants, . These results generalize and improve some known results about both neutral and delay differential equations.


Sign in / Sign up

Export Citation Format

Share Document