scholarly journals Paracrine study of adipose tissue-derived mesenchymal stem cells (ADMSCs) in a self-assembling nano-polypeptide hydrogel environment

2021 ◽  
Vol 10 (1) ◽  
pp. 547-554
Author(s):  
Jianmin Ling ◽  
Ailing Tian ◽  
Xin Yi ◽  
Nianfeng Sun

Abstract To research the paracrine role of adipose tissue-derived mesenchymal stem cells (ADMSCs) in promoting angiogenesis under the three-dimensional culture conditions consisting of a functionalized self-assembling peptide nanofiber hydrogel. ADMSCs were isolated, extracted, and then identified. Three kinds of peptides (RADAI-16, RGD, and KLT) were prepared, and a functionalized self-assembling peptide nanofiber hydrogel was produced by mixing RADAI-16, RGD, and KLT in a volume ratio 2:1:1. AFM was used to observe RADAI-16, RGD, KLT, and the functionalized self-assembling peptide nanofiber hydrogel. Then, ADMSCs were cultured under three-dimensional conditions consisting of the peptide nanofiber hydrogel, and AFM was used to observe cell migration. The ADMSCs in the common culture group (37°C, 5% CO2 cell culture box) and hypoxic culture group (37°C, 10% CO2, and 1% O2 hypoxic culture box) acted as controls. ADMSCs were three-dimensionally cultured in situ for 1 day, and then the concentrations of HGF and VEGF in the supernatant were determined by ELISA. Cells were extracted from the peptide nanofiber hydrogel, and HO-1 expression was detected by western blotting. ADMSCs have high expression levels of CD29, CD90, and CDl05 and low expression levels of CD34 and CD45. In addition, they can differentiate into adipocytes and osteocytes. The diameters of the fibers of RADAI-16, RGD, KLT, and the functionalized self-assembling peptide hydrogel are 17.34 ± 1.82, 15.50 ± 1.41, 13.77 ± 1.18, and 20.26 ± 1.25 nm, respectively. AFM indicated that cells in the functionalized self-assembling peptide nanofiber hydrogel migrated farther than those in RADAI-16. The concentrations of HGF under common, hypoxic, and three-dimensional culture conditions were 47.31 ± 6.75, 247.86 ± 17.59, and 297.25 ± 17.95 pg/mL, respectively, while the concentrations of VEGF were 218.30 ± 3.03, 267.13 ± 4.27, and 289.14 ± 3.11 pg/mL, respectively. Both HGF and VEGF were expressed more in the presence of the functionalized self-assembling peptide nanofiber hydrogel than in its absence (P < 0.05). Using western blotting, ADMSCs cultured under hypoxic and three-dimensional conditions were found to have high expression levels of HO-1. Culturing ADMSCs under three-dimensional conditions consisting of functionalized self-assembling peptide nanofiber hydrogels can promote their paracrine role in angiogenesis, such as HGF and VEGF, and hypoxia is one of the important elements.

2020 ◽  
Author(s):  
Zhanao Liu ◽  
Ailing Tian ◽  
Xin Yi ◽  
Lufeng Fan ◽  
Wenchong Shao ◽  
...  

Abstract Objectives: To investigate the transplantation of a functionalized self-assembling nanopeptide hydrogel loaded with adipose-derived mesenchymal stem cells (AD-MSCs) into a rabbit hindlimb ischemia model and to evaluate its effect in promoting vascular regeneration in ischemic tissues.Methods: Functionalized self-assembling nanopeptide hydrogels were synthesized, and the physical and chemical properties of the hydrogels were observed by electron microscopy. Primary AD-MSCs were isolated, cultured, immunophenotyped, induced to differentiate, and verified. The self-assembling nanopeptide hydrogel was combined with mesenchymal stem cells for the three-dimensional culture of AD-MSCs, and the growth characteristics were investigated. Animal models were injected with AD-MSC-loaded self-assembled peptide hydrogel, and the therapeutic effects on arterial ischemia were analyzed.Results: The pore size of the functionalized self-assembling nanopeptide hydrogel was suitable for cell growth. Stem cells had a tendency for migration, differentiation, and angiogenesis in three-dimensional culture. The experimental results of transplantation into the rabbit hindlimb ischemia model showed that the functionalized self-assembling nanopeptide hydrogel loaded with AD-MSCs had better efficacy than AD-MSC transplantation alone.Conclusion: Functionalized self-assembling nanopeptide hydrogels can be used as scaffold materials for three-dimensional culture of AD-MSCs. Functionalized self-assembling peptide hydrogels combined with AD-MSCs have better therapeutic effects than traditional stem cell therapies and can promote vascular regeneration.


2020 ◽  
Author(s):  
Zhanao Liu ◽  
Ailing Tian ◽  
Xin Yi ◽  
Lufeng Fan ◽  
Wenchong Shao ◽  
...  

Abstract Background: To investigate the transplantation of a functionalized self-assembling nanopeptide hydrogel loaded with adipose-derived mesenchymal stem cells (AD-MSCs) into a rabbit hindlimb ischemia model and to evaluate its effect in promoting vascular regeneration in ischemic tissues.Methods: Functionalized self-assembling nanopeptide hydrogels were synthesized, and the physical and chemical properties of the hydrogels were observed by electron microscopy. Primary AD-MSCs were isolated, cultured, immunophenotyped, induced to differentiate, and verified. The self-assembling nanopeptide hydrogel was combined with mesenchymal stem cells for the three-dimensional culture of AD-MSCs, and the growth characteristics were investigated. Animal models were injected with AD-MSC-loaded self-assembled peptide hydrogel, and the therapeutic effects on arterial ischemia were analyzed.Results: The pore size of the functionalized self-assembling nanopeptide hydrogel was suitable for cell growth. Stem cells had a tendency for migration, differentiation, and angiogenesis in three-dimensional culture. The experimental results of transplantation into the rabbit hindlimb ischemia model showed that the functionalized self-assembling nanopeptide hydrogel loaded with AD-MSCs had better efficacy than AD-MSC transplantation alone.Conclusion: Functionalized self-assembling nanopeptide hydrogels can be used as scaffold materials for three-dimensional culture of AD-MSCs. Functionalized self-assembling peptide hydrogels combined with AD-MSCs have better therapeutic effects than traditional stem cell therapies and can promote vascular regeneration.


PLoS ONE ◽  
2018 ◽  
Vol 13 (11) ◽  
pp. e0206811 ◽  
Author(s):  
Jing Li ◽  
Tong Chen ◽  
Xiahe Huang ◽  
Yunshan Zhao ◽  
Bin Wang ◽  
...  

2011 ◽  
Vol 236 (11) ◽  
pp. 1333-1341 ◽  
Author(s):  
Giuseppe Musumeci ◽  
Debora Lo Furno ◽  
Carla Loreto ◽  
Rosario Giuffrida ◽  
Silvia Caggia ◽  
...  

The present study focused on the isolation, cultivation and characterization of human mesenchymal stem cells (MSCs) from adipose tissue and on their differentiation into chondrocytes through the NH ChondroDiff medium. The main aim was to investigate some markers of biomechanical quality of cartilage, such as lubricin, and collagen type I and II. Little is known, in fact, about the ability of chondrocytes from human MSCs of adipose tissue to generate lubricin in three-dimensional (3D) culture. Lubricin, a 227.5-kDa mucinous glycoprotein, is known to play an important role in articular joint physiology, and the loss of accumulation of lubricin is thought to play a role in the pathology of osteoarthritis. Adipose tissue is an alternative source for the isolation of multipotent MSCs, which allows them to be obtained by a less invasive method and in larger quantities than from other sources. These cells can be isolated from cosmetic liposuctions in large numbers and easily grown under standard tissue culture conditions. 3D chondrocytes were assessed by histology (hematoxylin and eosin) and histochemistry (Alcian blue and Safranin-O/fast green staining). Collagen type I, II and lubricin expression was determined through immunohistochemistry and Western blot. The results showed that, compared with control cartilage and monolayer chondrocytes showing just collagen type I, chondrocytes from MSCs (CD44-, CD90- and CD105- positive; CD45-, CD14- and CD34-negative) of adipose tissue grown in nodules were able to express lubricin, and collagen type I and II, indicative of hyaline cartilage formation. Based on the function of lubricin in the joint cavity and disease and as a potential therapeutic agent, our results suggest that MSCs from adipose tissue are a promising cell source for tissue engineering of cartilage. Our results suggest that chondrocyte nodules producing lubricin could be a novel biotherapeutic approach for the treatment of cartilage abnormalities.


Sign in / Sign up

Export Citation Format

Share Document