scholarly journals Performance of Ozonation Process as Advanced Treatment for Antibiotics Removal in Membrane Permeate

2016 ◽  
Vol 62 (2) ◽  
pp. 21-26 ◽  
Author(s):  
Cao Ngoc Dan Thanh ◽  
Vo Thi Kim Quyen ◽  
Nguyen Thanh Tin ◽  
Bui Xuan Thanh

Abstract There was an investigation into the removal of 6 types of antibiotics from hospital wastewater through membrane bioreactor (MBR) treatment and ozonation processes. Six types of antibiotics, namely, Sulfamethoxazole (SMZ), Norfloxacin (NOR), Ciprofloxacin (CIP), Ofloxacin (OFL), Erythromycin (ERY), and Vancomycin (VAN) which had high detection frequencies in collected samples from hospital wastewater treatment plant (HWTPs). After MBR treatment, the removal efficiencies of SMZ, NOR, OFL, and ERY were 45%, 25%, 30%, and 16%, respectively. Among of them, almost no elimination was observed for CIP and VAN since their concentrations increased by 0.24 ± 0.18 (μg·l-1) and 0.83 ± 0.20 (μg·l-1), respectively. Then, residues of the antibiotics were removed from the MBR effluent by the ozonation process. The overall removal efficiencies of SMZ, NOR, CIP, OFL, ERY, and VAN were approximately 66 %, 88 %, 83 %, 80 %, 93 %, and 92 %, respectively. The reason might be depended on different ozone consumption of those antibiotics (ABS) in a range of 313 to 1681 μg ABS·gO--1. Consequently, the ozonation process performed better in the antibiotics removal (e.g. CIP and VAN) so ozonation could be considered as important support for the MBR treatment to reduce the risk of antibiotic residues.

Chemosphere ◽  
2019 ◽  
Vol 230 ◽  
pp. 377-383 ◽  
Author(s):  
Thi-Kim-Quyen Vo ◽  
Xuan-Thanh Bui ◽  
Shiao-Shing Chen ◽  
Phuoc-Dan Nguyen ◽  
Ngoc-Dan-Thanh Cao ◽  
...  

2015 ◽  
Vol 1092-1093 ◽  
pp. 1033-1036
Author(s):  
Kang Xie ◽  
Jing Song ◽  
Si Qing Xia ◽  
Li Ping Qiu ◽  
Jia Bin Wang ◽  
...  

In this study, high salinity wastewater was treated by an intermittently aerated membrane bioreactor (IAMBR) and the salinity loadings were set at 35g/L. The activated sludge was inoculated from the municipal wastewater treatment plant. The influent salinity level gradually increased from 0 to 35 g/L with every 5 g/L. With the salt concentration increased to 35 g/L, the performance of IAMBR was significantly affected by higher salinity. The removal efficiencies of the total organic carbon (TOC), ammonia nitrogen (NH4+-N) and total nitrogen (TN) were about 83%, 70% and 51%, respectively. It is indicated that the domestication of activated sludge from municipal wastewater treatment cannot obtain a better performance at high salinity.


1995 ◽  
Vol 31 (12) ◽  
pp. 171-183 ◽  
Author(s):  
M. M. Saqqar ◽  
M. B. Pescod

The performance of the primary anaerobic pond at the Alsamra Wastewater Treatment Plant in Jordan was monitored over 48 months. Overall averages for the removal efficiencies of BOD5, COD and suspended solids were 53%, 53% and 74%, respectively. An improvement in removal efficiency with increase in pond water temperature was demonstrated. A model, which takes into account the variability of raw wastewater at different locations, has been developed to describe the performance of a primary anaerobic pond in terms of a settleability ratio for the raw wastewater. The model has been verified by illustrating the high correlation between actual and predicted pond performance.


2017 ◽  
Vol 77 (2) ◽  
pp. 337-345 ◽  
Author(s):  
I. Brückner ◽  
K. Kirchner ◽  
Y. Müller ◽  
S. Schiwy ◽  
K. Klaer ◽  
...  

Abstract The project DemO3AC (demonstration of large-scale wastewater ozonation at the Aachen-Soers wastewater treatment plant, Germany) of the Eifel-Rur Waterboard contains the construction of a large-scale ozonation plant for advanced treatment of the entire 25 million m³/yr of wastewater passing through its largest wastewater treatment plant (WWTP). In dry periods, up to 70% of the receiving water consists of treated wastewater. Thus, it is expected that effects of ozonation on downstream water biocoenosis will become observable. Extensive monitoring of receiving water and the WWTP shows a severe pollution with micropollutants (already prior to WWTP inlet). (Eco-)Toxicological investigations showed increased toxicity at the inlet of the WWTP for all assays. However, endocrine-disrupting potential was also present at other sampling points at the WWTP and in the river and could not be eliminated sufficiently by the WWTP. Total cell counts at the WWTP are slightly below average. Investigations of antibiotic resistances show no increase after the WWTP outlet in the river. However, cells carrying antibiotic-resistant genes seem to be more stress resistant in general. Comparing investigations after implementation of ozonation should lead to an approximation of the correlation between micropollutants and water quality/biocoenosis and the effects that ozonation has on this matter.


2020 ◽  
Vol 59 (6) ◽  
pp. 4633-4641
Author(s):  
Rachida El Morabet ◽  
Roohul Abad Khan ◽  
Javed Mallick ◽  
Nadeem A. Khan ◽  
Sirajuddin Ahmed ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document