Treatment of High Salinity Wastewater Using an Intermittently Aerated Membrane Bioreactor

2015 ◽  
Vol 1092-1093 ◽  
pp. 1033-1036
Author(s):  
Kang Xie ◽  
Jing Song ◽  
Si Qing Xia ◽  
Li Ping Qiu ◽  
Jia Bin Wang ◽  
...  

In this study, high salinity wastewater was treated by an intermittently aerated membrane bioreactor (IAMBR) and the salinity loadings were set at 35g/L. The activated sludge was inoculated from the municipal wastewater treatment plant. The influent salinity level gradually increased from 0 to 35 g/L with every 5 g/L. With the salt concentration increased to 35 g/L, the performance of IAMBR was significantly affected by higher salinity. The removal efficiencies of the total organic carbon (TOC), ammonia nitrogen (NH4+-N) and total nitrogen (TN) were about 83%, 70% and 51%, respectively. It is indicated that the domestication of activated sludge from municipal wastewater treatment cannot obtain a better performance at high salinity.

Membranes ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 421
Author(s):  
Dimitra C. Banti ◽  
Michail Tsangas ◽  
Petros Samaras ◽  
Antonis Zorpas

Membrane bioreactor (MBR) systems are connected to several advantages compared to the conventional activated sludge (CAS) units. This work aims to the examination of the life cycle environmental impact of an MBR against a CAS unit when treating municipal wastewater with similar influent loading (BOD = 400 mg/L) and giving similar high-quality effluent (BOD < 5 mg/L). The MBR unit contained a denitrification, an aeration and a membrane tank, whereas the CAS unit included an equalization, a denitrification, a nitrification, a sedimentation, a mixing, a flocculation tank and a drum filter. Several impact categories factors were calculated by implementing the Life Cycle Assessment (LCA) methodology, including acidification potential, eutrophication potential, global warming potential (GWP), ozone depletion potential and photochemical ozone creation potential of the plants throughout their life cycle. Real data from two wastewater treatment plants were used. The research focused on two parameters which constitute the main differences between the two treatment plants: The excess sludge removal life cycle contribution—where GWPMBR = 0.50 kg CO2-eq*FU−1 and GWPCAS = 2.67 kg CO2-eq*FU−1 without sludge removal—and the wastewater treatment plant life cycle contribution—where GWPMBR = 0.002 kg CO2-eq*FU−1 and GWPCAS = 0.14 kg CO2-eq*FU−1 without land area contribution. Finally, in all the examined cases the environmental superiority of the MBR process was found.


2015 ◽  
Vol 6 (1) ◽  
pp. 55-70 ◽  
Author(s):  
Kathleen A. Patnode ◽  
Elizabeth Hittle ◽  
Robert M. Anderson ◽  
Lora Zimmerman ◽  
John W. Fulton

Abstract We examined the effect of high salinity wastewater (brine) from oil and natural gas drilling on freshwater mussels in the Allegheny River, Pennsylvania, during 2012. Mussel cages (N = 5 per site) were deployed at two sites upstream and four sites downstream of a brine treatment facility on the Allegheny River. Each cage contained 20 juvenile northern riffleshell mussels Epioblasma torulosa rangiana). Continuous specific conductance and temperature data were recorded by water quality probes deployed at each site. To measure the amount of mixing throughout the entire study area, specific conductance surveys were completed two times during low-flow conditions along transects from bank to bank that targeted upstream (reference) reaches, a municipal wastewater treatment plant discharge upstream of the brine-facility discharge, the brine facility, and downstream reaches. Specific conductance data indicated that high specific conductance water from the brine facility (4,000–12,000 µS/cm; mean 7,846) compared to the reference reach (103–188 µS/cm; mean 151) is carried along the left descending bank of the river and that dilution of the discharge via mixing does not occur until 0.5 mi (805 m) downstream. Juvenile northern riffleshell mussel survival was severely impaired within the high specific conductance zone (2 and 34% at and downstream of the brine facility, respectively) and at the municipal wastewater treatment plant (21%) compared to background (84%). We surveyed native mussels (family Unionidae) at 10 transects: 3 upstream, 3 within, and 4 downstream of the high specific conductance zone. Unionid mussel abundance and diversity were lower for all transects within and downstream of the high conductivity zone compared to upstream. The results of this study clearly demonstrate in situ toxicity to juvenile northern riffleshell mussels, a federally endangered species, and to the native unionid mussel assemblage located downstream of a brine discharge to the Allegheny River.


1998 ◽  
Vol 38 (3) ◽  
pp. 167-172
Author(s):  
Jin Duanyao ◽  
Wang Baozhen ◽  
Wang Lin

The Zhen'an Wastewater Treatment Plant in Foshan City, Guangdong Province, China is a newly built large municipal wastewater treatment plant in south China, situated in the southeast of the famous ancient Foshan City, has a treatment capacity of 100,000 m3/d, serves an area of 32 km2 and 220,000 P. E., occupies 7 ha area with a total investment of 220 million RMB (about 26.5 million U.S dollar), which was put into operation in December 1995. As it is difficult to design and operate the wastewater treatment plant because of the low organic concentration of its influent, the simplified A/O activated sludge process without primary treatment for simultaneous removal of phosphorus and ammonia nitrogen was employed to design the plant, by which, the wastewater is treated very well, with higher effluent quality than the traditional activated sludge process, while the capital and O/M costs are lower than the latter.


2019 ◽  
Vol 11 (3) ◽  
pp. 622 ◽  
Author(s):  
Isabella Pecorini ◽  
Francesco Baldi ◽  
Renato Iannelli

Four inocula collected from different operating facilities were tested in their hydrogenic performances by means of two biochemical hydrogen potential test set-ups using sucrose and food waste as substrates, with the aim of evaluating the influence of inoculum media in batch fermentative assays. The selected inocula were: activated sludge collected from the aerobic unit of a municipal wastewater treatment plant, digested sludge from an anaerobic reactor treating organic waste and cattle manure, digested sludge from an anaerobic reactor treating agroindustrial residues, and digested sludge from an anaerobic reactor of a municipal wastewater treatment plant. Test results, in terms of specific hydrogen production, hydrogen conversion efficiency, and volatile solids removal efficiency, were significantly dependent on the type of inoculum. Statistical analysis showed different results, indicating that findings were due to the different inocula used in the tests. In particular, assays performed with activated sludge showed the highest performances for both substrates and both experimental set-ups.


2013 ◽  
Vol 20 (1) ◽  
pp. 199-208 ◽  
Author(s):  
Marketa Julinova ◽  
Jan Kupec ◽  
Roman Slavik ◽  
Maria Vaskova

Abstract A synthetic polymer, polyvinylpyrrolidone (PVP - E 1201) primarily finds applications in the pharmaceutical and food industries due to its resistance and zero toxicity to organisms. After ingestion, the substance passes through the organism unchanged. Consequently, it enters the systems of municipal wastewater treatment plants (WWTP) without decomposing biologically during the waste treatment process, nor does it attach (through sorption) to particles of activated sludge to any significant extent, therefore, it passes through the system of a WWTP, which may cause the substance to accumulate in the natural environment. For this reason the paper investigates the potential to initiate aerobic biodegradation of PVP in the presence of activated sludge from a municipal wastewater treatment plant. The following agents were selected as the initiators of the biodegradation process - co-substrates: acrylamide, N-acethylphenylalanine and 1-methyl-2-pyrrolidone, a substance with a similar structure to PVP monomer. The biodegradability of PVP in the presence of co-substrates was evaluated on the basis of biological oxygen demand (BOD) as determined via a MicroOxymax O2/CO2/CH4 respirometer. The total substrate concentration in the suspension equaled 400 mg·dm-3, with the ratio between PVP and the cosubstrate being 1:1, while the concentration of the dry activated sludge was 500 mg·dm-3. Even though there was no occurrence of a significant increase in the biodegradation of PVP alone in the presence of a co-substrate, acrylamide appeared to be the most effective type of co-substrate. Nevertheless, a recorded decrease in the slope of biodegradation curves over time may indicate that a process of primary decomposition was underway, which involves the production of metabolites that inhibit activated sludge microorganisms. The resulting products are not identified at this stage of experimentation.


2003 ◽  
Vol 3 (5-6) ◽  
pp. 267-273 ◽  
Author(s):  
T. Wintgens ◽  
J. Rosen ◽  
T. Melin ◽  
C. Brepols ◽  
K. Drensla ◽  
...  

The paper outlines a model of the filtration performance of submerged capillary microfiltration modules in membrane bioreactor applications for wastewater treatment. The model was implemented for process simulation and calibrated by using operating data of the full-scale municipal wastewater treatment plant Rödingen, Germany, operated by Erft River Association (Erftverband), which is equipped with activated sludge treatment and microfiltration units for biomass retention. Mathematically recordable foundations of filtration resistances, such as cake layer forming and fouling, are presented along with a mass transfer model, describing the concentration polarisation on the feed-side and its dependence on a multiphase flow regime. The model simulates the long-term decrease in permeability of the membranes and outlines the influence of main operating parameters on flux performance. After parameter fitting for one filtration unit, the permeability evolution for a second unit could be also calculated.


Sign in / Sign up

Export Citation Format

Share Document