scholarly journals A Numerical Study of Non-hydrostatic Shallow Flows in Open Channels

2017 ◽  
Vol 64 (1) ◽  
pp. 17-35 ◽  
Author(s):  
Yebegaeshet T. Zerihun

AbstractThe flow field of many practical open channel flow problems, e.g. flow over natural bed forms or hydraulic structures, is characterised by curved streamlines that result in a non-hydrostatic pressure distribution. The essential vertical details of such a flow field need to be accounted for, so as to be able to treat the complex transition between hydrostatic and non-hydrostatic flow regimes. Apparently, the shallow-water equations, which assume a mild longitudinal slope and negligible vertical acceleration, are inappropriate to analyse these types of problems. Besides, most of the current Boussinesq-type models do not consider the effects of turbulence. A novel approach, stemming from the vertical integration of the Reynolds-averaged Navier-Stokes equations, is applied herein to develop a non-hydrostatic model which includes terms accounting for the effective stresses arising from the turbulent characteristics of the flow. The feasibility of the proposed model is examined by simulating flow situations that involve non-hydrostatic pressure and/or nonuniform velocity distributions. The computational results for free-surface and bed pressure profiles exhibit good correlations with experimental data, demonstrating that the present model is capable of simulating the salient features of free-surface flows over sharply-curved overflow structures and rigid-bed dunes.

Author(s):  
Hans Bihs ◽  
Mayilvahanan Alagan Chella ◽  
Arun Kamath ◽  
Øivind Asgeir Arntsen

For the stability of offshore structures, such as offshore wind foundations, extreme wave conditions need to be taken into account. Waves from extreme events are critical from the design perspective. In a numerical wave tank, extreme waves can be modeled using focused waves. Here, linear waves are generated from a wave spectrum. The wave crests of the generated waves coincide at a preselected location and time. Focused wave generation is implemented in the numerical wave tank module of REEF3D, which has been extensively and successfully tested for various wave hydrodynamics and wave–structure interaction problems in particular and for free surface flows in general. The open-source computational fluid dynamics (CFD) code REEF3D solves the three-dimensional Navier–Stokes equations on a staggered Cartesian grid. Higher order numerical schemes are used for time and spatial discretization. For the interface capturing, the level set method is selected. In order to test the generated waves, the time series of the free surface elevation are compared with experimental benchmark cases. The numerically simulated free surface elevation shows good agreement with experimental data. In further computations, the impact of the focused waves on a vertical circular cylinder is investigated. A breaking focused wave is simulated and the associated kinematics is investigated. Free surface flow features during the interaction of nonbreaking focused waves with a cylinder and during the breaking process of a focused wave are also investigated along with the numerically captured free surface.


Author(s):  
Domenica Mirauda ◽  
Antonio Volpe Plantamura ◽  
Stefano Malavasi

This work analyzes the effects of the interaction between an oscillating sphere and free surface flows through the reconstruction of the flow field around the body and the analysis of the displacements. The experiments were performed in an open water channel, where the sphere had three different boundary conditions in respect to the flow, defined as h* (the ratio between the distance of the sphere upper surface from the free surface and the sphere diameter). A quasi-symmetric condition at h* = 2, with the sphere equally distant from the free surface and the channel bottom, and two conditions of asymmetric bounded flow, one with the sphere located at a distance of 0.003m from the bottom at h* = 3.97 and the other with the sphere close to the free surface at h* = 0, were considered. The sphere was free to move in two directions, streamwise (x) and transverse to the flow (y), and was characterized by values of mass ratio, m* = 1.34 (ratio between the system mass and the displaced fluid mass), and damping ratio, ζ = 0.004. The comparison between the results of the analyzed boundary conditions has shown the strong influence of the free surface on the evolution of the vortex structures downstream the obstacle.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Deepak Garg ◽  
Antonella Longo ◽  
Paolo Papale

This work aims to develop a numerical wave tank for viscous and inviscid flows. The Navier-Stokes equations are solved by time-discontinuous stabilized space-time finite element method. The numerical scheme tracks the free surface location using fluid velocity. A segregated algorithm is proposed to iteratively couple the fluid flow and mesh deformation problems. The numerical scheme and the developed computer code are validated over three free surface problems: solitary wave propagation, the collision between two counter moving waves, and wave damping in a viscous fluid. The benchmark tests demonstrate that the numerical approach is effective and an attractive tool for simulating viscous and inviscid free surface flows.


Author(s):  
Mou-jin Zhang ◽  
Chuan-gang Gu ◽  
Yong-miao Miao

The complex three-dimensional flow field in a centrifugal impeller with low speed is studied in this paper. Coupled with high–Reynolds–number k–ε turbulence model, the fully three–dimensional Reynolds averaged Navier–Stokes equations are solved. The Semi–Implicit Method for Pressure–Linked Equations (SIMPLE) algorithm is used. And the non–staggered grid arrangement is also used. The computed results are compared with the available experimental data. The comparison shows good agreement.


Author(s):  
Iraj Saeedpanah ◽  
M. Shayanfar ◽  
E. Jabbari ◽  
Mohammad Haji Mohammadi

Free surface flows are frequently encountered in hydraulic engineering problems including water jets, weirs and around gates. An iterative solution to the incompressible two-dimensional vertical steady Navier-Stokes equations, comprising momentum and continuity equations, is used to solve for the priori unknown free surface, the velocity and the pressure fields. The entire water body is covered by a unstructured finite element grid which is locally refined. The dynamic boundary condition is imposed for the free surface where the pressure vanishes. This procedure is done continuously until the normal velocities components vanish. To overcome numerical errors and oscillations encountering in convection terms, the SUPG (streamline upwinding Petrov-Galerkin) method is applied. The solution method is tested for different discharges onto a standard spillway geometries. The results shows good agreement with available experimental data.


Author(s):  
Pablo Go´mez ◽  
Julio Herna´ndez ◽  
Joaqui´n Lo´pez ◽  
Fe´lix Faura

A numerical study of the initial stages of wave breaking processes in shallow water is presented. The waves considered are assumed to be generated by moving a piston in a two-dimensional channel, and may appear, for example, in the injection chamber of a high-pressure die casting machine under operating conditions far from the optimal. A numerical model based on a finite-difference discretization of the Navier-Stokes equations in a Cartesian grid and a second-order approximate projection method has been developed and used to carry out the simulations. The evolution of the free surface is described using a level set method, with a reinitialization procedure of the level set function which uses a local grid refinement near the free surface. The ability of different algorithms to improve mass conservation in the reinitialization step of the level set function has been tested in a time-reversed single vortex flow. The results for the breaking wave profiles show the flow characteristics after the impact of the first plunging jet onto the wave’s forward face and during the subsequent splash-up.


Author(s):  
Dolfred Vijay Fernandes ◽  
Sangmo Kang ◽  
Yong Kweon Suh

Electrophoresis is the motion of dispersed particles relative to a fluid under the influence of an electric field. Presently this phenomenon of electrokinetics is widely used in biotechnology for the separation of proteins, sequencing of polypeptide chains etc. The separation efficiency of these biomolecules is affected by their aggregation. Thus it is important to study the interaction forces between the molecules. In this study we calculate the electrophoretic motion of a pair of colloidal particles under axial electric field. The hydrodynamic and electric double layer (EDL) interaction forces are calculated numerically. The EDL interaction force is calculated from electric field distribution around the particle using Maxwell stress tensor and the hydrodynamic force is calculated from the flow field obtained from the solution of Stokes equations. The continuous forcing approach of immersed boundary method is used to obtain flow field around the moving particles. The EDL distribution around the particles is obtained by solving Poisson-Nernst-Planck (PNP) equations on a hybrid grid system. The EDL interaction force calculated from numerical solution is compared with the one obtained from surface element integration (SEI) method.


2006 ◽  
Vol 50 (6) ◽  
pp. 649-672 ◽  
Author(s):  
J. W. Lee ◽  
M. D. Teubner ◽  
J. B. Nixon ◽  
P. M. Gill

2007 ◽  
Vol 9 (2) ◽  
pp. 81-94 ◽  
Author(s):  
V. Kutija ◽  
M. G. Murray

Over the past 40 years many hydraulic modelling systems for free-surface flows have been developed and successfully used in research and engineering practice. These systems were, in general, developed using sequential programming techniques while object-oriented programming approaches have only been used in the development of their visual parts. This paper outlines the approach used in the development of the NOAH modelling systems (Newcastle Object-oriented Advanced Hydroinformatics), developed entirely within the object-oriented paradigm. This novel approach has made NOAH modelling systems computationally highly efficient and yet easy to maintain and extend. NOAH 1D and NOAH 2D are designed to model free-surface flows in one and two dimensions, respectively. NOAH 1D is based on the full de Saint-Venant equations while NOAH 2D is based on the Shallow Water equations. Beside the basic ideas behind the development of NOAH modelling systems this paper also presents their main features and discusses general benefits of the application of the object-oriented programming approach in the development of numerical codes.


Water ◽  
2018 ◽  
Vol 10 (5) ◽  
pp. 638 ◽  
Author(s):  
Francesco Calomino ◽  
Giancarlo Alfonsi ◽  
Roberto Gaudio ◽  
Antonino D’Ippolito ◽  
Agostino Lauria ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document