Spatial Distribution of Metal Ions in Spruce Wood by Synchrotron Radiation Microbeam X-Ray Fluorescence Analysis

Holzforschung ◽  
1999 ◽  
Vol 53 (5) ◽  
pp. 474-480 ◽  
Author(s):  
Annica Berglund ◽  
Harald Brelid ◽  
Anders Rindby ◽  
Per Engström

Summary The possibility of using synchrotron radiation microbeam X-ray fluorescence (μ -XRF) for the determination of the morphological distribution of inorganic elements in wood has been investigated. A number of samples were analyzed and some of the results are presented in this paper. The new application of the method showed good results and it was concluded that the technique is useful for specific in situ metal ion analysis of wood. One of its special advantages is that it is a non-destructive method, which may allow analysis of the same sample before and after a chemical treatment. This study shows the natural distribution of a selection of metal ions in wood. Some differences in the distribution and amount of certain metals could also be observed in a sample that had been subjected to treatment with an EDTA-solution.

2009 ◽  
Vol 54 (5) ◽  
pp. 420-423 ◽  
Author(s):  
Tsunenori Matsunaga ◽  
Hidetaka Ishizaki ◽  
Shuji Tanabe ◽  
Yoshihiko Hayashi

Author(s):  
R. E. Ogilvie ◽  
S. H. Moll ◽  
M. A. Schippert

An X-ray spectrometer has been developed to extend the analytical capability of the Philips EM-200/EM-300 Electron Microscopes to studies of sample chemistry. It attaches directly to the objective aperture port of the rotating/tilting specimen stage.Shown in Figure 1, the spectrometer is a high resolution instrument, employing a mica crystal which is continuously curved to fulfill the X-ray focusing conditions over the entire angular range. Equipped with a flow proportional counter, it is capable of analyzing characteristic X-ray lines of any element from Na through U. With the rotating/tilting specimen stage and a replacement aperture installed in the microscope, the spectrometer may be attached to or removed from the instrument in less than five minutes. It may also be left in situ during normal use of the microscope.Supplementing the present ability of the electron microscope to investigate morphology and crystal structure (by electron diffraction), the spectrometer allows the simultaneous determination of chemical composition by microprobe X-ray fluorescence analysis of areas approximately one micron in diameter.


2013 ◽  
Vol 103 (11) ◽  
pp. 113904 ◽  
Author(s):  
C. Streeck ◽  
S. Brunken ◽  
M. Gerlach ◽  
C. Herzog ◽  
P. Hönicke ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
pp. 512-518
Author(s):  
Ekaterina Nikolskaya ◽  
Mika Liukkonen ◽  
Yrjö Hiltunen

AbstractThe main purpose of this paper is to demonstrate the potential of time-domain nuclear magnetic resonance (TD-NMR) technology for monitoring the concentrations of metal ions in water-based solutions. The main focus of this work was paramagnetic ions, such as Mn2+, Cu2+, Fe3+, Fe2+, Zn2+ and Ni2+, which are often the principal metal components in mining waters. Laboratory samples of different concentrations of single metals and mixtures of them and samples of real mining water were used in the relaxation rate (R2) measurements. The measurements of single metal ions were used for the determination of the relaxivities of those ions. The concentrations of the ions in the mining water as a function of pH were also estimated by means of the X-ray fluorescence (XRF) method and ChemEQL software for calculating chemical speciation equilibria. Using these concentration values and the relaxivities of the metal ions, the total relaxation rate (R2) results were then calculated. Principally, the results of these three different determinations are in relatively good agreement. It can be concluded that TD-NMR has great potential for monitoring metal ion concentrations during water treatment.


2020 ◽  
Vol 24 (4) ◽  
pp. 236-276
Author(s):  
A. G. Revenko ◽  

X-ray fluorescence analysis (XRF) is widely used when determining the concentrations of elements in various materials in biological research. Current review considers the achievements related to the features of the XRF method. X-ray fluorescence analysis in most cases is a non-destructive method that has proven its potential for measuring the concentrations of elements with a high atomic number Z in organs and tissues in vivo. The main areas of its application in biology and medicine are content determination of basic and toxic elements in plants, samples of bones, teeth, hairs, nails and tissues of vital organs, body fluids such as blood, serum, plasma, saliva, urine, etc. Usually, these studies are part of applied programs that include environmental and metabolic analyses of the population, including the influence of professional factors. The advantages of XRF are also discussed with regards to biological materials. It is noted that the form of the element in the sample practically does not affect the analysis result. In recent years, several new XRF spectrometers models have been designed, where polycapillary lenses and half lenses are used as collimating systems. This is important in the case of in vivo application of X-ray fluorescence determination of certain elements in bones and tissues. The dynamic development is typical for detectors with thermoelectric cooling. Variants of preparation of biological materials for analysis are discussed (grinding, dry or wet ashing, acid decomposition, use of suspensions in the case of XRF with TIR). The results of evaluating the interelement effects for XRF of materials of plant origin, including herbs, spices, apple leaves, birch and tomato leaves, tea, wheat, rye, rice, oatmeal, flax flour, beans, ground, and instant coffee are presented. Examples of the use of XRF in various types of forensic research are considered: poisoning, counterfeiting of drugs and food brands, dental implants, identification of remains. The review presents examples of the participation of Russian X-ray physicists in solving the problems under consideration. The list of references is 400 papers, mainly including the publications of the last 20 years.


2019 ◽  
Vol 186 (2-3) ◽  
pp. 268-273
Author(s):  
Radek Prokeš ◽  
Tomáš Trojek

Abstract Confocal micro-beam X-ray fluorescence analysis (confocal micro-XRF) is a non-destructive analytical tool for investigation of sample composition that enables acquiring three-dimensionally resolved information. This work describes a calibration procedure of a laboratory confocal micro-XRF setup, which leads to determination of its characteristic parameters. The calibration is performed using a tabletop confocal micro-XRF spectrometer designed recently at the Czech Technical University in Prague. The calibration procedure performed within this work comprises the essential steps of the setup characterization: excitation spectrum calculation, experimental determination of energy-dependent confocal volume size and integral sensitivity and calculation of the spectrometer sensitivity function. The results of the setup calibration will be used for development of a procedure enabling quantitative evaluation of the measured depth profiles.


2019 ◽  
Vol 34 (1) ◽  
pp. 163
Author(s):  
Helen Jamil Khoury ◽  
Roberto Araújo ◽  
Sandra De Brito Barreto ◽  
Viviane Khoury Asfora

No presente trabalho são 1 apresentados os resultados de estudos por fluorescência de raios X de tijolos brasileiros. Neste estudo foram avaliados 22 tijolos, sendo sete de Igarassu, dois do Forte do Brum e 13 de Olinda. Um equipamento portátil de fluorescência de raios X por dispersão de energia foi desenvolvido para este estudo. Análises por difração de raios X também foram efetuadas para determinar as fases cristalinas presentes nos tijolos. Os resultados mostraram a existência de fases minerais, como quartzo, em todos os tijolos avaliados. A Análise da Componente Principal foi aplicada aos dados dos espectros de fluorescência de raios X obtidos. Os resultados mostraram que a partir do gráfico de scores das componentes principais CP1 e CP3, respectivamente representadas pelo Fe e Ca, foi possível separar os tijolos de Igarassu e do Forte do Brum em cinco grupos, que estavam associados com o século de fabricação. Por sua vez, os tijolos de Olinda foram separados em dois grupos, sendo um formado por um único tijolo e o outro grupo pelos demais tijolos. Estes resultados sugerem que os tijolos foram produzidos com diferentes matérias primas ou em diferentes locais. ENERGY DISPERSIVE X-RAY FLUORESCENCE APPLIED TO THE CHARACTERIZATION OF BRICKS OF PERNAMBUCO HISTORICAL SITESABSTRACTThis work presents the results of X-ray fluorescence analysis of Brazilian bricks, collected from several historical sites of the State of Pernambuco, Brazil. In this study, twenty two bricks were analyzed; seven from Igarassu, two from Forte do Brum in Recife, and thirteen from Olinda. A portable X-ray fluorescence system was assembled and used for the qualitative determination of the chemical elements present in the samples. X-ray diffraction analysis was also carried out to determine the crystal mineral phases in the bricks. All the bricks studied showed several minerals, such as quartz A Principle Component Analysis was applied to the full X-ray fluorescence spectra. In the score plot of principal components PC1 and PC3, represented by Fe and Ca respectively, it can be seen that the results for the bricks from Igarassu and Forte do Brum may be grouped in five clusters corresponding to the bricks´ century and manufacture locations. The analysis of the Olinda bricks yielded two separate groups, one with a single brick and the second group with the other eleven bricks. These results suggest that the bricks were produced with different raw-materials or manufactured in different locations.KEYWORDS: non-destructive analysis; X-ray fluorescence; cultural heritage; bricks; X-ray diffraction.


2021 ◽  
Vol 25 (2) ◽  
pp. 155-173
Author(s):  
A. G. Revenko ◽  

Current article considers the contribution of X-ray physicists from the city of Novosibirsk to the formation and development of the two X-ray spectral analysis directions: electron probe microanalysis and X-ray fluorescence analysis using the synchrotron radiation. The research on geological topics at the Institute of Geology and Geophysics of the Siberian Branch of the USSR Academy of Sciences using the MS-46 electron probe microanalyzer of the French company CAMECA (since 1967) served as the basis for the development of methods for the quantitative X-ray microanalysis of rock-forming minerals as the methods for quantitative determination of the contents of elements with low atomic numbers in the long-wavelength X-ray region were still in their infancy. With the development and the improvement of the method’s technical base (microprobes JXA-5A, JEOL, 1975; Kamebaks Micro, CAMECA, 1981; JXA-8100, JEOL, 2003; JXA-8230, JEOL, 2016; electronic computing), the software for controlling the operation of devices and converting the measured intensities of the analytical lines into the concentration of elements continued to changed and improve. The first results of elemental analysis, obtained using the synchrotron radiation to excite X-ray fluorescence at the VEPP-3 accelerating ring at the Institute of Nuclear Physics of the Siberian Branch of the USSR Academy of Sciences, were published in1977. Inthe following years, at the station of elemental SRXRF, samples of various nature were studied — biological (bio tissues of the heart, liver, lungs, hairs, bones, plants), geological, environmental objects (soils, sediments, aerosols, etc.), archaeological sites as well as new technological materials. The procedures for the determination of chemical elements in low-mass samples (milligrams) in unique samples of lunar soil samples, biopsy material of human myocardial tissues, etc. have been developed. The scanning device at the elemental SRXRF station made it possible to obtain the information for reconstructing the climate change for different periods of time – from 100 to 1000 years. A new non-destructive method of confocal X-ray microscopy for studying micro-objects and visualizing the distribution of chemical elements in extended objects on this station are currently being developed.


Sign in / Sign up

Export Citation Format

Share Document