Regulation of necroptosis signaling and cell death by reactive oxygen species

2016 ◽  
Vol 397 (7) ◽  
pp. 657-660 ◽  
Author(s):  
Simone Fulda

Abstract Necroptosis has recently been identified as an alternative form of programmed cell death that is characterized by defined molecular mechanisms. Reactive oxygen species (ROS) are involved in the regulation of numerous signaling pathways, as they are highly reactive and can cause (ir)reversible posttranslational modifications. While the role of ROS in other modes of cell death has been extensively studied, its impact on necroptotic signaling and cell death is far less clear. The current minireview discusses the evidence for and against a role of ROS in necroptosis.

2015 ◽  
Vol 66 (10) ◽  
pp. 2869-2876 ◽  
Author(s):  
Irene Serrano ◽  
María C. Romero-Puertas ◽  
Luisa M. Sandalio ◽  
Adela Olmedilla

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8733
Author(s):  
Xia An ◽  
Jie Chen ◽  
Guanrong Jin

Heavy metal contamination of soils has become a serious global issue, and bioremediation has been proposed as a potential solution. Kenaf (Hibiscus cannabinus L.) is a fast growing, non-woody multipurpose annual plant that is suitable for removing excess heavy metals from soils. However, there has been relatively little research on the kenaf molecular mechanisms induced in response to an exposure to heavy metal stress. Thus, whole kenaf seedlings grown under control (normal) and stress (plumbic treatment) conditions were sampled for transcriptome sequencing. Unigenes generated through the de novo assembly of clean reads were functionally annotated based on seven databases. Transcription factor (TF)-coding genes were predicted and the physiological traits of the seedlings were analyzed. A total of 44.57 Gb high-quality sequencing data were obtained, which were assembled into 136,854 unigenes. These unigenes included 1,697 that were regarded as differentially expressed genes (DEGs). A GO enrichment analysis of the DEGs indicated that many of them are related to catalytic activities. Moreover, the DEGs appeared to suggest that numerous KEGG pathways are suppressed (e.g., the photosynthesis-involving pathways) or enhanced (like the flavonoid metabolism pathways) in response to Pb stress. Of the 2,066 predicted TF-coding genes, only 55 were differentially expressed between the control and stressed samples. Further analyses suggested that the plumbic stress treatment induced reactive oxygen species-dependent programmed cell death in the kenaf plants via a process that may be regulated by the differentially expressed NAC TF genes.


2021 ◽  
Vol 22 (23) ◽  
pp. 12942
Author(s):  
Chanjuan Ye ◽  
Shaoyan Zheng ◽  
Dagang Jiang ◽  
Jingqin Lu ◽  
Zongna Huang ◽  
...  

Programmed cell death (PCD) plays crucial roles in plant development and defence response. Reactive oxygen species (ROS) are produced during normal plant growth, and high ROS concentrations can change the antioxidant status of cells, leading to spontaneous cell death. In addition, ROS function as signalling molecules to improve plant stress tolerance, and they induce PCD under different conditions. This review describes the mechanisms underlying plant PCD, the key functions of mitochondria and chloroplasts in PCD, and the relationship between mitochondria and chloroplasts during PCD. Additionally, the review discusses the factors that regulate PCD. Most importantly, in this review, we summarise the sites of production of ROS and discuss the roles of ROS that not only trigger multiple signalling pathways leading to PCD but also participate in the execution of PCD, highlighting the importance of ROS in PCD.


PLoS ONE ◽  
2018 ◽  
Vol 13 (12) ◽  
pp. e0208802 ◽  
Author(s):  
Fabrizio Araniti ◽  
Aitana Costas-Gil ◽  
Luz Cabeiras-Freijanes ◽  
Antonio Lupini ◽  
Francesco Sunseri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document