ultraviolet c
Recently Published Documents


TOTAL DOCUMENTS

643
(FIVE YEARS 286)

H-INDEX

39
(FIVE YEARS 8)

2022 ◽  
Vol 12 ◽  
Author(s):  
Amadou Sidibé ◽  
Marie Thérèse Charles ◽  
Jean-François Lucier ◽  
Yanqun Xu ◽  
Carole Beaulieu

Preharvest application of hormetic doses of ultraviolet-C (UV-C) generates beneficial effects in plants. In this study, within 1 week, four UV-C treatments of 0.4 kJ/m2 were applied to 3-week-old lettuce seedlings. The leaves were inoculated with a virulent strain of Xanthomonas campestris pv. vitians (Xcv) 48 h after the last UV-C application. The extent of the disease was tracked over time and a transcriptomic analysis was performed on lettuce leaf samples. Samples of lettuce leaves, from both control and treated groups, were taken at two different times corresponding to T2, 48 h after the last UV-C treatment and T3, 24 h after inoculation (i.e., 72 h after the last UV-C treatment). A significant decrease in disease severity between the UV-C treated lettuce and the control was observed on days 4, 8, and 14 after pathogen inoculation. Data from the transcriptomic study revealed, that in response to the effect of UV-C alone and/or UV-C + Xcv, a total of 3828 genes were differentially regulated with fold change (|log2-FC|) > 1.5 and false discovery rate (FDR) < 0.05. Among these, of the 2270 genes of known function 1556 were upregulated and 714 were downregulated. A total of 10 candidate genes were verified by qPCR and were generally consistent with the transcriptomic results. The differentially expressed genes observed in lettuce under the conditions of the present study were associated with 14 different biological processes in the plant. These genes are involved in a series of metabolic pathways associated with the ability of lettuce treated with hormetic doses of UV-C to resume normal growth and to defend themselves against potential stressors. The results indicate that the hormetic dose of UV-C applied preharvest on lettuce in this study, can be considered as an eustress that does not interfere with the ability of the treated plants to carry on a set of key physiological processes namely: homeostasis, growth and defense.


2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Jamie S. Depelteau ◽  
Ludovic Renault ◽  
Nynke Althof ◽  
C. Keith Cassidy ◽  
Luiza M. Mendonça ◽  
...  

AbstractCryo-electron microscopy has become an essential tool to understand structure and function of biological samples. Especially for pathogens, such as disease-causing bacteria and viruses, insights gained by cryo-EM can aid in developing cures. However, due to the biosafety restrictions of pathogens, samples are often treated by chemical fixation to render the pathogen inert, affecting the ultrastructure of the sample. Alternatively, researchers use in vitro or ex vivo models, which are non-pathogenic but lack the complexity of the pathogen of interest. Here we show that ultraviolet-C (UVC) radiation applied at cryogenic temperatures can be used to eliminate or dramatically reduce the infectivity of Vibrio cholerae and the bacterial virus, the ICP1 bacteriophage. We show no discernable structural impact of this treatment of either sample using two cryo-EM methods: cryo-electron tomography followed by sub-tomogram averaging, and single particle analysis (SPA). Additionally, we applied the UVC irradiation to the protein apoferritin (ApoF), which is a widely used test sample for high-resolution SPA studies. The UVC-treated ApoF sample resulted in a 2.1 Å structure indistinguishable from an untreated published map. This research demonstrates that UVC treatment is an effective and inexpensive addition to the cryo-EM sample preparation toolbox.


Pathogens ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 83
Author(s):  
Rhodri Harfoot ◽  
Deborah B. Y. Yung ◽  
William A. Anderson ◽  
Cervantée E. K. Wild ◽  
Nicolene Coetzee ◽  
...  

The arrival of SARS-CoV-2 to Aotearoa/New Zealand in February 2020 triggered a massive response at multiple levels. Procurement and sustainability of medical supplies to hospitals and clinics during the then upcoming COVID-19 pandemic was one of the top priorities. Continuing access to new personal protective equipment (PPE) was not guaranteed; thus, disinfecting and reusing PPE was considered as a potential alternative. Here, we describe part of a local program intended to test and implement a system to disinfect PPE for potential reuse in New Zealand. We used filtering facepiece respirator (FFR) coupons inoculated with SARS-CoV-2 or clinically relevant multidrug-resistant pathogens (Acinetobacter baumannii Ab5075, methicillin-resistant Staphylococcus aureus USA300 LAC and cystic-fibrosis isolate Pseudomonas aeruginosa LESB58), to evaluate the potential use of ultraviolet-C germicidal irradiation (UV-C) or dry heat treatment to disinfect PPE. An applied UV-C dose of 1000 mJ/cm2 was sufficient to completely inactivate high doses of SARS-CoV-2; however, irregularities in the FFR coupons hindered the efficacy of UV-C to fully inactivate the virus, even at higher UV-C doses (2000 mJ/cm2). Conversely, incubating contaminated FFR coupons at 65 °C for 30 min or 70 °C for 15 min, was sufficient to block SARS-CoV-2 replication, even in the presence of mucin or a soil load (mimicking salivary or respiratory secretions, respectively). Dry heat (90 min at 75 °C to 80 °C) effectively killed 106 planktonic bacteria; however, even extending the incubation time up to two hours at 80 °C did not completely kill bacteria when grown in colony biofilms. Importantly, we also showed that FFR material can harbor replication-competent SARS-CoV-2 for up to 35 days at room temperature in the presence of a soil load. We are currently using these findings to optimize and establish a robust process for decontaminating, reusing, and reducing wastage of PPE in New Zealand.


Author(s):  
Wen-Lin Su ◽  
Chih-Pei Lin ◽  
Hui-Ching Huang ◽  
Yao-Kuang Wu ◽  
Mei-Chen Yang ◽  
...  

Author(s):  
Urvashi Varshney ◽  
Neha Aggarwal ◽  
Govind Gupta

Different variants of novel coronavirus disease are spreading and emerging rapidly all over the world causing a health pandemic. With this sudden outbreak, ultraviolet-C (UV-C) sterilizing devices are being significantly...


2021 ◽  
Vol 4 (3) ◽  
pp. 65-76
Author(s):  
Ndaru Nuridho Alfian ◽  
Damara Kartikasari ◽  
Nur Setyo Adi Widodo ◽  
Dwi Joko Suroso

The global COVID-19 outbreak has hit the world in the last two years. Indonesia itself recorded positive cases of COVID-19 of approximately 4 million cases as of September 15, 2021. In addition, the frequency of occurrence of natural disasters in Indonesia, which is relatively high every year, requires our collective attention. In early 2021, there have been several natural disasters, including floods in South Kalimantan, earthquakes in West Sulawesi, and others. If the impact of the natural disaster makes residents must do the evacuation, a proper shelter (evacuee camp) and prioritizes health protocols are needed. Therefore, this study discusses the design innovation of disaster response shelters in the form of smart folding and floating shelters designed for a shelter with a capacity of one family (4-5 people). This capacity limitation is to maintain health protocols and suppress the transmission of the Coronavirus in evacuation areas. Our designed shelter prepared in a compact form to facilitate evacuation mobility and can be implemented in all types of disasters with a folding and floating structure system (the shelter can float and be folded). The material used is light steel as the main structure and cork wall as a material that allows the shelter to float. We designed natural ventilation to regulate air circulation, integrated with an ultraviolet C (UVC) lamp. The UVC lamp is intended as a disinfectant against the Coronavirus. Thus, the application of natural ventilation and disinfection using UVC can provide a cleaner air supply. This air supply and circulation are shown in our simulation results using ANSYS Fluent. These results show that smart folding and floating shelter designs can be used for disaster mitigation.


2021 ◽  
pp. bmjinnov-2021-000790
Author(s):  
Gabriele Messina ◽  
Davide Amodeo ◽  
Alessio Corazza ◽  
Nicola Nante ◽  
Gabriele Cevenini

IntroductionSurface disinfection is one of the key points to reduce the risk of transmission both in healthcare and other public spaces. A novel UV-chip disinfection technology is presented. Technological, photonic and microbiocidal characteristics are evaluated taking as reference an ultraviolet-C (UV-C) LED source of equivalent radiant power.MethodsThe UV chip has a circular radiating surface with a diameter of 1.3 cm, emitting UV cold light at about 5 mW and driven current of about 80 µA. Four bacterial strains were used to conduct the microbiological tests at 4°C and 60°C to evaluate the bactericidal performance of the two technologies under the same operating conditions.ResultsSpectral differences were found between the UV-C LED and the chip, with an emission curve strictly around 280 nm and a broader band centred around 264 nm, respectively. Between-technology microbiological inactivation levels were comparable, achieving total abatement (99.999%) in 8 min at 7.5 cm.DiscussionThe UV chip exhibits unique properties that make it applicable in some specific contexts, where UV-C LEDs present the most critical issues. Besides, it is portable and exhibits a broad spectrum of UV wavelengths with a peak where the maximum microbiocidal efficacy occurs. Important issues to be addressed to improve this technology are the high voltage management and the too low energy efficiency.ConclusionThis cold emission technology is virtually unaffected by changes in ambient temperature and is particularly useful in short-distance applications. Recent developments in technology are moving towards a progressive increase in the chip’s radiant power.


Sign in / Sign up

Export Citation Format

Share Document