scholarly journals In vitro evidence that KLK14 regulates the components of the HGF/Met axis, pro-HGF and HGF-activator inhibitor 1A and 1B

2016 ◽  
Vol 397 (12) ◽  
pp. 1299-1305 ◽  
Author(s):  
Janet C. Reid ◽  
Nigel C. Bennett ◽  
Carson R. Stephens ◽  
Melanie L. Carroll ◽  
Viktor Magdolen ◽  
...  

Abstract Kallikrein-related peptidase (KLK) 14 is a serine protease linked to several pathologies including prostate cancer. We show that KLK14 has biphasic effects in vitro on activating and inhibiting components of the prostate cancer associated hepatocyte growth factor (HGF)/Met system. At 5–10 nm, KLK14 converts pro-HGF to the two-chain heterodimer required for Met activation, while higher concentrations degrade the HGF α-chain. HGF activator-inhibitor (HAI)-1A and HAI-1B, which inhibit pro-HGF activators, are degraded by KLK14 when protease:inhibitor stoichiometry is 1:1 or the protease is in excess. When inhibitors are in excess, KLK14 generates HAI-1A and HAI-1B fragments known to inhibit pro-HGF activating serine proteases. These in vitro data suggest that increased KLK14 activity could contribute at multiple levels to HGF/Met-mediated processes in prostate and other cancers.

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 14-14
Author(s):  
Ida Steiro ◽  
Pegah Abdollahi ◽  
Magne Børset ◽  
Tobias S. Slørdahl

Both in newly diagnosed multiple myeloma (MM) and during progression of the disease, malignant plasma cells are found circulating in peripheral blood as well as in the bone marrow (BM). The disseminated nature of MM is strongly dependent on the interplay between the cancer cells and the BM microenvironment, promoting myeloma cell migration in the BM. Matriptase (ST14), a type-II transmembrane serine protease primarily found in epithelial tissues, is overexpressed in a variety of human malignancies and is sufficient to induce tumour formation in mice. Frequently, a concomitant reduction in the levels of its cognate inhibitor hepatocyte growth factor activator inhibitor (HAI)-1 (SPINT1) is observed in carcinomas, while expression and function of the related inhibitor HAI-2 (SPINT2) is yet to be clarified. Dysregulated expression causing increased matriptase proteolytic activity has been associated with cancer growth, survival and metastasis. Here, we show for the first time a role of matriptase as a possible tumour suppressor in myeloma pathogenesis. Gene expression analysis of primary cells from MM patients (n=24) and human myeloma cell lines (n=8) revealed highly variable levels of matriptase, HAI-1 and HAI-2. This observation prompted us to investigate the functional role of matriptase in vitro. We showed that stable overexpression of matriptase in INA-6, a MM cell line with no endogenous ST14 expression, reduced migration by more than 50% in response to the combination of the pro-migratory cytokines stromal cell-derived factor-1 alpha (SDF-1α) and hepatocyte growth factor (HGF, Fig. 1A). Conversely, stable knockdown of matriptase in two MM cell lines with high endogenous matriptase expression (RPMI-8226 and JJN-3) significantly enhanced migration in vitro. Mechanistically, matriptase overexpression blocked activation of Src kinase (Fig. 1B), well-known as a critical player in metastasis formation promoting cancer cell motility, invasiveness and angiogenesis. In agreement with our result, previous studies have demonstrated the activation of Src family kinases (SFK) downstream SDF-1/CXCR4-signaling. Finally, we performed survival analyses in the public available MMRF CoMMpass trial database (release version IA14). Low ST14 expression was associated with significant worse overall survival (P=0.05, Fig. 1C) and progression-free survival (P=0.02, Fig. 1D). Altogether, our data are in marked contrast to the role ascribed to matriptase in epithelial and certain non-epithelial tumours as an oncogenic protein and an unfavourable prognostic marker. In conclusion, these findings suggest a novel role of matriptase as a tumour suppressor in MM pathogenesis. Disclosures Slørdahl: Celgene: Consultancy; Janssen and Celgene: Honoraria.


2008 ◽  
Vol 413 (2) ◽  
pp. 251-259 ◽  
Author(s):  
Sine Godiksen ◽  
Joanna Selzer-Plon ◽  
Esben D. K. Pedersen ◽  
Kathrine Abell ◽  
Hanne B. Rasmussen ◽  
...  

HAI-1 [HGF (hepatocyte growth factor) activator inhibitor-1] is a Kunitz-type transmembrane serine protease inhibitor that forms inhibitor complexes with the trypsin-like serine protease, matriptase. HAI-1 is essential for mouse placental development and embryo survival and together with matriptase it is a key regulator of carcinogenesis. HAI-1 is expressed in polarized epithelial cells, which have the plasma membrane divided by tight junctions into an apical and a basolateral domain. In the present study we show that HAI-1 at steady-state is mainly located on the basolateral membrane of both Madin–Darby canine kidney cells and mammary gland epithelial cells. After biosynthesis, HAI-1 is exocytosed mainly to the basolateral plasma membrane from where 15% of the HAI-1 molecules are proteolytically cleaved and released into the basolateral medium. The remaining membrane-associated HAI-1 is endocytosed and then recycles between the basolateral plasma membrane and endosomes for hours until it is transcytosed to the apical plasma membrane. Minor amounts of HAI-1 present at the apical plasma membrane are proteolytically cleaved and released into the apical medium. Full-length membrane-bound HAI-1 has a half-life of 1.5 h and is eventually degraded in the lysosomes, whereas proteolytically released HAI-1 is more stable. HAI-1 is co-localized with its cognate protease, matriptase, at the basolateral plasma membrane. We suggest that HAI-1, in addition to its protease inhibitory function, plays a role in transporting matriptase as a matriptase–HAI-1 complex from the basolateral plama membrane to the apical plasma membrane, as matriptase is known to interact with prostasin, located at the apical plasma membrane.


1997 ◽  
Vol 272 (10) ◽  
pp. 6370-6376 ◽  
Author(s):  
Takeshi Shimomura ◽  
Kimitoshi Denda ◽  
Akiko Kitamura ◽  
Toshiya Kawaguchi ◽  
Masahiro Kito ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document