Regulation of Rap GTPases in mammalian neurons

2016 ◽  
Vol 397 (10) ◽  
pp. 1055-1069 ◽  
Author(s):  
Bhavin Shah ◽  
Andreas W. Püschel

Abstract Small GTPases are central regulators of many cellular processes. The highly conserved Rap GTPases perform essential functions in the mammalian nervous system during development and in mature neurons. During neocortical development, Rap1 is required to regulate cadherin- and integrin-mediated adhesion. In the adult nervous system Rap1 and Rap2 regulate the maturation and plasticity of dendritic spine and synapses. Although genetic studies have revealed important roles of Rap GTPases in neurons, their regulation by guanine nucleotide exchange factors (GEFs) that activate them and GTPase activating proteins (GAPs) that inactivate them by stimulating their intrinsic GTPase activity is just beginning to be explored in vivo. Here we review how GEFs and GAPs regulate Rap GTPases in the nervous system with a focus on their in vivo function.

F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 1676 ◽  
Author(s):  
Andrew B. Goryachev ◽  
Marcin Leda

Small GTPases are organizers of a plethora of cellular processes. The time and place of their activation are tightly controlled by the localization and activation of their regulators, guanine-nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Remarkably, in some systems, the upstream regulators of GTPases are also found downstream of their activity. Resulting feedback loops can generate complex spatiotemporal dynamics of GTPases with important functional consequences. Here we discuss the concept of positive autoregulation of small GTPases by the GEF–effector feedback modules and survey recent developments in this exciting area of cell biology.


2019 ◽  
Vol 30 (15) ◽  
pp. 1846-1863 ◽  
Author(s):  
Shweta V. Pipaliya ◽  
Alexander Schlacht ◽  
Christen M. Klinger ◽  
Richard A. Kahn ◽  
Joel Dacks

Guanine nucleotide exchange factors (GEFs) are the initiators of signaling by every regulatory GTPase, which in turn act to regulate a wide array of essential cellular processes. To date, each family of GTPases is activated by distinct families of GEFs. Bidirectional membrane trafficking is regulated by ADP-ribosylation factor (ARF) GTPases and the development throughout eukaryotic evolution of increasingly complex systems of such traffic required the acquisition of a functionally diverse cohort of ARF GEFs to control it. We performed phylogenetic analyses of ARF GEFs in eukaryotes, defined by the presence of the Sec7 domain, and found three subfamilies (BIG, GBF1, and cytohesins) to have been present in the ancestor of all eukaryotes. The four other subfamilies (EFA6/PSD, IQSEC7/BRAG, FBX8, and TBS) are opisthokont, holozoan, metazoan, and alveolate/haptophyte specific, respectively, and each is derived from cytohesins. We also identified a cytohesin-derived subfamily, termed ankyrin repeat-containing cytohesin, that independently evolved in amoebozoans and members of the SAR and haptophyte clades. Building on evolutionary data for the ARF family GTPases and their GTPase-­activating proteins allowed the generation of hypotheses about ARF GEF protein function(s) as well as a better understanding of the origins and evolution of cellular complexity in eukaryotes.


2022 ◽  
Author(s):  
Maciek Adamowski ◽  
Ivana Matijević ◽  
Jiří Friml

ARF small GTPases are molecular switches acting in intracellular trafficking. Their cycles of activity are controlled by regulators, ARF Guanine nucleotide Exchange Factors (ARF-GEFs) and ARF GTPase Activating Proteins (ARF-GAPs). The ARF-GEF GNOM (GN) and the ARF-GAP VAN3 share a prominent function in auxin-mediated developmental patterning, but the ARFs which they might control were not identified. We conducted a loss-of-function and localization-based screening of the ARF/ARF-LIKE gene family in Arabidopsis thaliana with the primary aim of identifying functional partners of GN and VAN3, while extending the limited understanding of this gene group as a whole. We identified a function of ARLA1 in branching angle control. Mutants lacking the variably localized ARLB1, ARFB1, ARFC1, ARFD1, and ARF3, even in high order combinations, do not exhibit any evident phenotypes. Loss of function arfa1 phenotypes support a major role of ARFA1 in growth and development overall, but patterning defects typical to gn loss of function are not found. ARFA1 are not localized at the plasma membrane, where GN and VAN3 carry out developmental patterning function according to current models. Taken together, putative ARF partners of GN and VAN3 in developmental patterning cannot be conclusively identified.


Biomolecules ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1340
Author(s):  
Lejia Xu ◽  
Yuki Nagai ◽  
Yotaro Kajihara ◽  
Genta Ito ◽  
Taisuke Tomita

Rab proteins are small GTPases that act as molecular switches for intracellular vesicle trafficking. Although their function is mainly regulated by regulatory proteins such as GTPase-activating proteins and guanine nucleotide exchange factors, recent studies have shown that some Rab proteins are physiologically phosphorylated in the switch II region by Rab kinases. As the switch II region of Rab proteins undergoes a conformational change depending on the bound nucleotide, it plays an essential role in their function as a ‘switch’. Initially, the phosphorylation of Rab proteins in the switch II region was shown to inhibit the association with regulatory proteins. However, recent studies suggest that it also regulates the binding of Rab proteins to effector proteins, determining which pathways to regulate. These findings suggest that the regulation of the Rab function may be more dynamically regulated by phosphorylation than just through the association with regulatory proteins. In this review, we summarize the recent findings and discuss the physiological and pathological roles of Rab phosphorylation.


2006 ◽  
Vol 26 (13) ◽  
pp. 4830-4842 ◽  
Author(s):  
Sonja G. Hunter ◽  
Guanglei Zhuang ◽  
Dana Brantley-Sieders ◽  
Wojciech Swat ◽  
Christopher W. Cowan ◽  
...  

ABSTRACT Angiogenesis, the process by which new blood vessels are formed from preexisting vasculature, is critical for vascular remodeling during development and contributes to the pathogenesis of diseases such as cancer. Prior studies from our laboratory demonstrate that the EphA2 receptor tyrosine kinase is a key regulator of angiogenesis in vivo. The EphA receptor-mediated angiogenic response is dependent on activation of Rho family GTPase Rac1 and is regulated by phosphatidylinositol 3-kinase. Here we report the identification of Vav2 and Vav3 as guanine nucleotide exchange factors (GEFs) that link the EphA2 receptor to Rho family GTPase activation and angiogenesis. Ephrin-A1 stimulation recruits the binding of Vav proteins to the activated EphA2 receptor. The induced association of EphA receptor and Vav proteins modulates the activity of Vav GEFs, leading to activation of Rac1 GTPase. Overexpression of either Vav2 or Vav3 in primary microvascular endothelial cells promotes Rac1 activation, cell migration, and assembly in response to ephrin-A1 stimulation. Conversely, loss of Vav2 and Vav3 GEFs inhibits Rac1 activation and ephrin-A1-induced angiogenic responses both in vitro and in vivo. In addition, embryonic fibroblasts derived from Vav2−/− Vav3−/− mice fail to spread on an ephrin-A1-coated surface and exhibit a significant decrease in the formation of ephrin-A1-induced lamellipodia and filopodia. These findings suggest that Vav GEFs serve as a molecular link between EphA2 receptors and the actin cytoskeleton and provide an important mechanism for EphA2-mediated angiogenesis.


2021 ◽  
Author(s):  
Monika Tucholska

The Fcγ receptor is a cell surface protein essential in the immune response that binds IgG-opsonized particles resulting in phagocytosis. Phagocytosis is a process used to remove pathogens and confine them in a vacuole that will enable their breakdown. The members of the Ras superfamily of small G proteins have been identified in samples where the activated Fcγ receptor complex was captured and analyzed using tandem mass spectrometry. The protein Rap. beloning to the Ras superfamily, guanosine triphosphatases (GTPase) activating proteins (GAPs), which promote the dissociation of GTP, and guanine nucleotide exchange factors (GEFs), that permits the exchange of GDP for GTP, were detected by SEQUEST in RAW 264.7 macrophages and futher analyzed using various methods. In this study, Raps, RasGAPs, and RapGEFs, were observed by tandem mass spectrometry and sequence correlation analysis. The selected isoforms were confirmed by Western blots, live cell confocal microscopy with fluorescent fusion constructs and antibody staining to verify the localization of Ras proetins, specifically Rap1, p120RasGAP and C3G, a RapGEF, to activated Fc reeceptor [sic].


2020 ◽  
Vol 21 (5) ◽  
pp. 1616 ◽  
Author(s):  
Ramoji Kosuru ◽  
Magdalena Chrzanowska

Ca2+ is a universal intracellular signal. The modulation of cytoplasmic Ca2+ concentration regulates a plethora of cellular processes, such as: synaptic plasticity, neuronal survival, chemotaxis of immune cells, platelet aggregation, vasodilation, and cardiac excitation–contraction coupling. Rap1 GTPases are ubiquitously expressed binary switches that alternate between active and inactive states and are regulated by diverse families of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Active Rap1 couples extracellular stimulation with intracellular signaling through secondary messengers—cyclic adenosine monophosphate (cAMP), Ca2+, and diacylglycerol (DAG). Much evidence indicates that Rap1 signaling intersects with Ca2+ signaling pathways to control the important cellular functions of platelet activation or neuronal plasticity. Rap1 acts as an effector of Ca2+ signaling when activated by mechanisms involving Ca2+ and DAG-activated (CalDAG-) GEFs. Conversely, activated by other GEFs, such as cAMP-dependent GEF Epac, Rap1 controls cytoplasmic Ca2+ levels. It does so by regulating the activity of Ca2+ signaling proteins such as sarcoendoplasmic reticulum Ca2+-ATPase (SERCA). In this review, we focus on the physiological significance of the links between Rap1 and Ca2+ signaling and emphasize the molecular interactions that may offer new targets for the therapy of Alzheimer’s disease, hypertension, and atherosclerosis, among other diseases.


Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1859
Author(s):  
Laura Streit ◽  
Laurent Brunaud ◽  
Nicolas Vitale ◽  
Stéphane Ory ◽  
Stéphane Gasman

Neuroendocrine tumors (NETs) belong to a heterogeneous group of neoplasms arising from hormone secreting cells. These tumors are often associated with a dysfunction of their secretory activity. Neuroendocrine secretion occurs through calcium-regulated exocytosis, a process that is tightly controlled by Rho GTPases family members. In this review, we compiled the numerous mutations and modification of expression levels of Rho GTPases or their regulators (Rho guanine nucleotide-exchange factors and Rho GTPase-activating proteins) that have been identified in NETs. We discussed how they might regulate neuroendocrine secretion.


Sign in / Sign up

Export Citation Format

Share Document