scholarly journals Structural and functional insight into pan-endopeptidase inhibition by α2-macroglobulins

2017 ◽  
Vol 398 (9) ◽  
pp. 975-994 ◽  
Author(s):  
Theodoros Goulas ◽  
Irene Garcia-Ferrer ◽  
Aniebrys Marrero ◽  
Laura Marino-Puertas ◽  
Stephane Duquerroy ◽  
...  

Abstract Peptidases must be exquisitely regulated to prevent erroneous cleavage and one control is provided by protein inhibitors. These are usually specific for particular peptidases or families and sterically block the active-site cleft of target enzymes using lock-and-key mechanisms. In contrast, members of the +1400-residue multi-domain α2-macroglobulin inhibitor family (α2Ms) are directed against a broad spectrum of endopeptidases of disparate specificities and catalytic types, and they inhibit their targets without disturbing their active sites. This is achieved by irreversible trap mechanisms resulting from large conformational rearrangement upon cleavage in a promiscuous bait region through the prey endopeptidase. After decades of research, high-resolution structural details of these mechanisms have begun to emerge for tetrameric and monomeric α2Ms, which use ‘Venus-flytrap’ and ‘snap-trap’ mechanisms, respectively. In the former, represented by archetypal human α2M, inhibition is exerted through physical entrapment in a large cage, in which preys are still active against small substrates and inhibitors that can enter the cage through several apertures. In the latter, represented by a bacterial α2M from Escherichia coli, covalent linkage and steric hindrance of the prey inhibit activity, but only against very large substrates.

2016 ◽  
Vol 44 (1) ◽  
pp. 315-328 ◽  
Author(s):  
Lindsey A. Flanagan ◽  
Alison Parkin

Hydrogenases are enzymes of great biotechnological relevance because they catalyse the interconversion of H2, water (protons) and electricity using non-precious metal catalytic active sites. Electrochemical studies into the reactivity of NiFe membrane-bound hydrogenases (MBH) have provided a particularly detailed insight into the reactivity and mechanism of this group of enzymes. Significantly, the control centre for enabling O2 tolerance has been revealed as the electron-transfer relay of FeS clusters, rather than the NiFe bimetallic active site. The present review paper will discuss how electrochemistry results have complemented those obtained from structural and spectroscopic studies, to present a complete picture of our current understanding of NiFe MBH.


2019 ◽  
Vol 9 (16) ◽  
pp. 4339-4346 ◽  
Author(s):  
Samuel G. Elliot ◽  
Irene Tosi ◽  
Sebastian Meier ◽  
Juan S. Martinez-Espin ◽  
Søren Tolborg ◽  
...  

Titrations and functional assays are combined to gain insight into the stoichiometric correlations for alkali ions and the tin active sites in Sn-Beta, and show that three different states with distinct catalytic properties exist.


RSC Advances ◽  
2019 ◽  
Vol 9 (62) ◽  
pp. 35957-35968 ◽  
Author(s):  
Nina V. Vlasenko ◽  
Yuri N. Kochkin ◽  
German M. Telbiz ◽  
Oleksiy V. Shvets ◽  
Peter E. Strizhak

The active sites of H-BEA zeolites for ETBE synthesis are the weak Brønsted acid sites representing internal silanol groups.


2019 ◽  
Author(s):  
M. Alexander Ardagh ◽  
Manish Shetty ◽  
Anatoliy Kuznetsov ◽  
Qi Zhang ◽  
Phillip Christopher ◽  
...  

Catalytic enhancement of chemical reactions via heterogeneous materials occurs through stabilization of transition states at designed active sites, but dramatically greater rate acceleration on that same active site is achieved when the surface intermediates oscillate in binding energy. The applied oscillation amplitude and frequency can accelerate reactions orders of magnitude above the catalytic rates of static systems, provided the active site dynamics are tuned to the natural frequencies of the surface chemistry. In this work, differences in the characteristics of parallel reactions are exploited via selective application of active site dynamics (0 < ΔU < 1.0 eV amplitude, 10<sup>-6</sup> < f < 10<sup>4</sup> Hz frequency) to control the extent of competing reactions occurring on the shared catalytic surface. Simulation of multiple parallel reaction systems with broad range of variation in chemical parameters revealed that parallel chemistries are highly tunable in selectivity between either pure product, even when specific products are not selectively produced under static conditions. Two mechanisms leading to dynamic selectivity control were identified: (i) surface thermodynamic control of one product species under strong binding conditions, or (ii) catalytic resonance of the kinetics of one reaction over the other. These dynamic parallel pathway control strategies applied to a host of chemical conditions indicate significant potential for improving the catalytic performance of many important industrial chemical reactions beyond their existing static performance.


Author(s):  
E.G. Shidlovskaya ◽  
L. Schimansky-Geier ◽  
Yu.M. Romanovsky

A two dimensional model for the substrate inside a pocket of an active site of an enzyme is presented and investigated as a vibrational system. The parameters of the system are evaluated for α-chymotrypsin. In the case of internal resonance it is analytically and numerically shown that the energy concentrated on a certain degree of freedom might be several times larger than in the non-resonant case. Additionally, the system is driven by harmonic excitations and again energy due to nonlinear phenomena is redistributed inhomogeneously. These results may be of importance for the determination of the rates of catalytic events of substrates bound in pockets of active sites.


The freeze-etching technique must be improved if structures at the molecular size level are to be seen. The limitations of the technique are discussed here together with the progress made in alleviating them. The vitrification of living specimens is limited by the fact that very high freezing rates are needed. The critical freezing rate can be lowered on the one hand by the introduction of antifreeze agents, on the other hand by the application of high hydrostatic pressure. The fracture process may cause structural distortions in the fracture face of the frozen specimen. The ‘double-replica’ method allows one to evaluate such artefacts and provides an insight into the way that membranes split. During etching there exists the danger of contaminating the fracture faces with condensable gases. Because of specimen temperatures below —110 °C, special care has to be taken in eliminating water vapour from the high vacuum. An improvement in coating freeze-etched specimens has resulted from the application of electron guns for evaporation of the highest melting-point metals. If heat transfer from gun to specimen is reduced to a minimum, Pt, Ir, Ta, W and C can be used for shadow casting. Best results are obtained with Pt-C and Ta-W . With the help of decoration effects Pt-C shadow castings give the most information about the fine structural details of the specimen.


1975 ◽  
Vol 53 (7) ◽  
pp. 747-757 ◽  
Author(s):  
Graham J. Moore ◽  
N. Leo Benoiton

The initial rates of hydrolysis of Bz-Gly-Lys and Bz-Gly-Phe by carboxypeptidase B (CPB) are increased in the presence of the modifiers β-phenylpropionic acid, cyclohexanol, Bz-Gly, and Bz-Gly-Gly. The hydrolysis of the tripeptide Bz-Gly-Gly-Phe is also activated by Bz-Gly and Bz-Gly-Gly, but none of these modifiers activate the hydrolysis of Bz-Gly-Gly-Lys, Z-Leu-Ala-Phe, or Bz-Gly-phenyllactic acid by CPB. All modifiers except cyclohexanol display inhibitory modes of binding when present in high concentration.Examination of Lineweaver–Burk plots in the presence of fixed concentrations of Bz-Gly has shown that activation of the hydrolysis of neutral and basic peptides by CPB, as reflected in the values of the extrapolated parameters, Km(app) and keat, occurs by different mechanisms. For Bz-Gly-Gly-Phe, activation occurs because the enzyme–modifier complex has a higher affinity than the free enzyme for the substrate, whereas activation of the hydrolysis of Bz-Gly-Lys derives from an increase in the rate of breakdown of the enzyme–substrate complex to give products.Cyclohexanol differs from Bz-Gly and Bz-Gly-Gly in that it displays no inhibitory mode of binding with any of the substrates examined, activates only the hydrolysis of dipeptides by CPB, and has a greater effect on the hydrolysis of the basic dipeptide than on the neutral dipeptide. Moreover, when Bz-Gly-Lys is the substrate, cyclohexanol activates its hydrolysis by CPB by increasing both the enzyme–substrate binding affinity and the rate of the catalytic step, an effect different from that observed when Bz-Gly is the modifier.The anomalous kinetic behavior of CPB is remarkably similar to that of carboxypeptidase A, and is a good indication that both enzymes have very similar structures in and around their respective active sites. A binding site for activator molecules down the cleft of the active site is proposed for CPB to explain the observed kinetic behavior.


Sign in / Sign up

Export Citation Format

Share Document