The Influence of Dwell Time on Low Cycle Fatigue Behavior of Ni-base Superalloy IC10

2017 ◽  
Vol 36 (8) ◽  
pp. 795-803
Author(s):  
Anqiang Wang ◽  
Lu Liu ◽  
Zhixun Wen ◽  
Zhenwei Li ◽  
Zhufeng Yue

AbstractLow cycle fatigue and creep-fatigue experiments of IC10 Ni-base superalloy plate specimens with multiple holes were performed below 1,000 °C. The average fatigue life is 105.4 cycles, while the creep-fatigue life is 103.4 cycles, which shows that the life of creep-fatigue is reduced 1–2 times compared with low cycle fatigue life. After tests, the detailed fracture and microscopic structure evolution were observed by scanning electron microscopy (SEM); meanwhile, the constitutive model based on crystal plasticity theory was established and the fracture mechanism was analyzed. Three conclusions have been obtained: First, the load during dwell time leads to the damage accumulation caused by deformation and the interaction of fatigue and creep shortens the service life of materials seriously. Second, in order to maintain the macroscopic deformation, a new slip plane starts to makes the dislocation slide in reverse direction, which leads to fatigue damage and initial cracks. Third, the inner free surface creates opportunities for escape of the dislocation line, which is caused by the cavity. What’s more, the cure dislocation generated by cyclic loading contributes to the formation and growth of cavities.

2015 ◽  
Vol 750 ◽  
pp. 121-126 ◽  
Author(s):  
Hui Chen Yu ◽  
Cheng Li Dong ◽  
Ying Li

Strain-controlled low cycle fatigue (LCF) and creep-fatigue interaction (CFI) tests of K447A are conducted at 760oC in order to investigate the effects of different dwell times and strain ratios on the fatigue behavior and life. For the cases of stain ratio Rε=-1 with balanced hold time, the tensile and compressive mean stresses will generate. For the case of stain ratio Rε=-1 with compressive holding 60s, the tensile mean stress will produce. For the case of stain ratio Rε=-1 with tensile holding 60s, the compressive mean stress will produce. For the cases of stain ratio Rε=0.1 and Rε=-1with no hold time, the tensile mean stress will produce. The cyclic damage accumulation (CDA) method and modified CDA method were employed to predict the fatigue life for K447A, respectively. The fatigue life predicted by CDA method is within the scatter band of 18.2X. The fatigue life predicted by the modified CDA method agrees very well with the experimental life and the predicted life is well within the scatter band of 3.1X, which means that the modified CDA method is able to consider the influences of dwell time and strain ratio on the fatigue life of K447A.


Author(s):  
Jürgen Rudolph ◽  
Adrian Willuweit ◽  
Steffen Bergholz ◽  
Christian Philippek ◽  
Jevgenij Kobzarev

Components of conventional power plants are subject to potential damage mechanisms such as creep, fatigue and their combination. These mechanisms have to be considered in the mechanical design process. Against this general background — as an example — the paper focusses on the low cycle fatigue behavior of a main steam shut off valve. The first design check based on standard design rules and linear Finite Element Analysis (FEA) identifies fatigue sensitive locations and potentially high fatigue usage. This will often occur in the context of flexible operational modes of combined cycle power plants which are a characteristic of the current demands of energy supply. In such a case a margin analysis constitutes a logical second step. It may comprise the identification of a more realistic description of the real operational loads and load-time histories and a refinement of the (creep-) fatigue assessment methods. This constitutes the basis of an advanced component design and assessment. In this work, nonlinear FEA is applied based on a nonlinear kinematic constitutive material model, in order to simulate the thermo-mechanical behavior of the high-Cr steel component mentioned above. The required material parameters are identified based on data of the accessible reference literature and data from an own test series. The accompanying testing campaign was successfully concluded by a series of uniaxial thermo-mechanical fatigue (TMF) tests simulating the most critical load case of the component. This detailed and hybrid approach proved to be appropriate for ensuring the required lifetime period of the component.


2012 ◽  
Vol 06 ◽  
pp. 251-256
Author(s):  
HO-YOUNG YANG ◽  
JAE-HOON KIM ◽  
KEUN-BONG YOO

Co -base superalloys have been applied in the stationary components of gas turbine owing to their excellent high temperature properties. Low cycle fatigue data on ECY-768 reported in a companion paper were used to evaluate fatigue life prediction models. In this study, low cycle fatigue tests are performed as the variables of total strain range and temperatures. The relations between plastic and total strain energy densities and number of cycles to failure are examined in order to predict the low cycle fatigue life of Cobalt-based super alloy at different temperatures. The fatigue lives is evaluated using predicted by Coffin-Manson method and strain energy methods is compared with the measured fatigue lives at different temperatures. The microstructure observing was performed for how affect able to low-cycle fatigue life by increasing the temperature.


Author(s):  
Mohamed E. M. El-Sayed

Fatigue is the most critical failure mode of many mechanical component. Therefore, fatigue life assessment under fluctuating loads during component development is essential. The most important requirement for any fatigue life assessment is knowledge of the relationships between stresses, strains, and fatigue life for the material under consideration. These relationships, for any given material, are mostly unique and dependent on its fatigue behavior. Since the work of Wöhler in the 1850’s, the uniaxial stress versus cycles to fatigue failure, which is known as the S-N curve, is typically utilized for high-cycle fatigue. In general, high cycle fatigue implies linear elastic behavior and causes failure after more than 104 or 105 cycles. However. the transition from low cycle fatigue to high cycle fatigue, which is unique for each material based on its properties, has not been well examined. In this paper, this transition is studied and a material dependent number of cycles for the transition is derived based on the material properties. Some implications of this derivation, on assessing and approximating the crack initiation fatigue life, are also discussed.


2018 ◽  
Vol 774 ◽  
pp. 210-216 ◽  
Author(s):  
Thierry Barriere ◽  
Gang Cheng ◽  
Sami Holopainen

Amorphous solids, such as certain polymers, alloys, and polymer-based composites,are increasingly used materials in engineering components and thus, their fatigue behavioris of utmost importance. The article presents a unified approach suitable for modeling bothisothermal high cycle and low cycle fatigue behavior. The emphasis is placed on the ductilefatigue in which fatigue damage represents the material degeneration during the creation ofmicro-cracks governing majority of the total fatigue life (up to 95%). The model’s capability fortechnologically important polycarbonate (PC) polymer is addressed. The results, in accordancewith experimental observations, favor ductile fatigue behavior, i.e. damage fields remain smallfor most of the fatigue life and do not cause the macroscopic stress reduction. Due to thisproperty, fatigue life of an entire structural element can be evaluated by exploiting singlelocations at which the fatigue damage decisively emerges.


2013 ◽  
Vol 794 ◽  
pp. 441-448 ◽  
Author(s):  
G.V. Prasad Reddy ◽  
R. Sandhya ◽  
M.D. Mathew ◽  
S. Sankaran

Low cycle fatigue (LCF) and Creep-fatigue interaction (CFI) behavior of 316LN austenitic stainless steel alloyed with 0.07, 0.11, 0.14, .22 wt.% nitrogen is briefly discussed in this paper. The strain-life fatigue behavior of these steels is found to be dictated by not only cyclic plasticity but also by dynamic strain aging (DSA) and secondary cyclic hardening (SCH). The influence of the above phenomenon on cyclic stress response and fatigue life is evaluated in the present study. The above mentioned steels exhibited both single-and dual-slope strain-life fatigue behavior depending on the test temperatures. Concomitant dislocation substructural evolution has revealed transition in substructures from planar to cell structures justifying the change in slope. The beneficial effect of nitrogen on LCF life is observed to be maximum for 316LN with nitrogen in the range 0.11 - 0.14 wt.%, for the tests conducted over a range of temperatures (773-873 K) and at ±0.4 and 0.6 % strain amplitudes at a strain rate of 3*10-3 s-1. A decrease in the applied strain rate from 3*10-3 s-1 to 3*10-5 s-1 or increase in the test temperature from 773 to 873 K led to a peak in the LCF life at a nitrogen content of 0.07 wt.%. Similar results are obtained in CFI tests conducted with tensile hold periods of 13 and 30 minutes. Fractography studies of low strain rate and hold time tested specimens revealed extensive intergranular cracking.


2013 ◽  
Vol 55 ◽  
pp. 830-834 ◽  
Author(s):  
G.S. Mahobia ◽  
R.G. Sudhakar ◽  
Ajesh Antony ◽  
K. Chattopadhyay ◽  
N.C. Santhi Srinivas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document