Human-Centered Design in the Energy Turnaround Project Enera – It Pays to Go Off the Beaten Track!

i-com ◽  
2019 ◽  
Vol 18 (1) ◽  
pp. 93-100 ◽  
Author(s):  
Jutta Fortmann ◽  
Frank Glanert

Abstract In this article, we give insights into the development of an ‘interface of energy’, which is developed as part of the energy turnaround project ‘enera’. This interface shall allow communication between the human and the future energy network which will be dominated by renewable energy sources and on-site power generation. We show how we applied Human-Centered Design methods to address the challenge of designing a user interface for an infrastructure that is still in development. Further, we show how this approach was successfully combined with public relations, such as feedback sessions on prototypes as part of an open Barcamp. We give insights into interviews, profiles, personas, public operations, user needs, prototyping and testing. As a special feature we conducted prototyping and prototype testing workshops in a residential house within the project region. These turned out to be very successful for many reasons, e. g., in that the natural environment served as a creative stimulator. Besides, the workshops had a lasting effect on the participants, who were members of the project as well as volunteers living in the project region.

2021 ◽  
Vol 11 (13) ◽  
pp. 5907
Author(s):  
Valerii Havrysh ◽  
Antonina Kalinichenko ◽  
Anna Brzozowska ◽  
Jan Stebila

The European Union has set targets for renewable energy utilization. Poland is a member of the EU, and its authorities support an increase in renewable energy use. The background of this study is based on the role of renewable energy sources in improving energy security and mitigation of climate change. Agricultural waste is of a significant role in bioenergy. However, there is a lack of integrated methodology for the measurement of its potential. The possibility of developing an integrated evaluation methodology for renewable energy potential and its spatial distribution was assumed as the hypothesis. The novelty of this study is the integration of two renewable energy sources: crop residues and animal husbandry waste (for biogas). To determine agricultural waste energy potential, we took into account straw requirements for stock-raising and soil conservation. The total energy potential of agricultural waste was estimated at 279.94 PJ. It can cover up to 15% of national power generation. The spatial distribution of the agricultural residue energy potential was examined. This information can be used to predict appropriate locations for biomass-based power generation facilities. The potential reduction in carbon dioxide emissions ranges from 25.7 to 33.5 Mt per year.


2021 ◽  
Vol 13 (18) ◽  
pp. 10261
Author(s):  
J. Sadhik Basha ◽  
Tahereh Jafary ◽  
Ranjit Vasudevan ◽  
Jahanzeb Khan Bahadur ◽  
Muna Al Ajmi ◽  
...  

This critical review report highlights the enormous potentiality and availability of renewable energy sources in the Gulf region. The earth suffers from extreme air pollution, climate changes, and extreme problems due to the enormous usage of underground carbon resources applications materialized in industrial, transport, and domestic sectors. The countries under Gulf Cooperation Council, i.e., Bahrain, Kuwait, Oman, Qatar, Saudi Arabia, and the United Arab Emirates, mainly explore those underground carbon resources for crude oil extraction and natural gas production. As a nonrenewable resource, these are bound to be exhausted in the near future. Hence, this review discusses the importance and feasibility of renewable sources in the Gulf region to persuade the scientific community to launch and explore renewable sources to obtain the maximum benefit in electric power generation. In most parts of the Gulf region, solar and wind energy sources are abundantly available. However, attempts to harness those resources are very limited. Furthermore, in this review report, innovative areas of advanced research (such as bioenergy, biomass) were proposed for the Gulf region to extract those resources at a higher magnitude to generate surplus power generation. Overall, this report clearly depicts the current scenario, current power demand, currently installed capacities, and the future strategies of power production from renewable power sources (viz., solar, wind, tidal, biomass, and bioenergy) in each and every part of the Gulf region.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3599 ◽  
Author(s):  
Martinez-Fernandez ◽  
deLlano-Paz ◽  
Calvo-Silvosa ◽  
Soares

Carbon mitigation is a major aim of the power-generation regulation. Renewable energy sources for electricity are essential to design a future low-carbon mix. In this work, financial Modern Portfolio Theory (MPT) is implemented to optimize the power-generation technologies portfolio. We include technological and environmental restrictions in the model. The optimization is carried out in two stages. Firstly, we minimize the cost and risk of the generation portfolio, and afterwards, we minimize its emission factor and risk. By combining these two results, we are able to draw an area which can be considered analogous to the Capital Market Line (CML) used by the Capital Asset Pricing model (CAPM). This area delimits the set of long-term power-generation portfolios that can be selected to achieve a progressive decarbonisation of the mix. This work confirms the relevant role of small hydro, offshore wind, and large hydro as preferential technologies in efficient portfolios. It is necessary to include all available renewable technologies in order to reduce the cost and the risk of the portfolio, benefiting from the diversification effect. Additionally, carbon capture and storage technologies must be available and deployed if fossil fuel technologies remain in the portfolio in a low-carbon approach.


2015 ◽  
Author(s):  
Sayem Zafar ◽  
Mohamed Gadalla

A renewable energy harvesting system is designed and tested for micro power generation. Such systems have applications ranging from mobile use to off-grid remote applications. This study analyzed the use of micro power generation for small unmanned aerial vehicle (UAV) flight operations. The renewable energy harvesting system consisted of a small wind turbine, flexible type PV panels and a small fuel cell. Fuel cell is considered the stable source while PV and wind turbine produced varying power output. The load of around 250 W is simulated by a small motor. The micro wind turbine with the total length of 4.5 m and the disk diameter of 1.8 m is tested. The micro wind turbine dimensions make it big enough to be used to charge batteries yet small enough to be installed on rooftops or easily transportable. The wind turbine blades are installed at an angle of 22°, with respect to the disk plane, as it gives the highest rotation. The voltage and current output for the corresponding RPM and wind speeds are recorded for the wind turbine. Two 2 m and a single 1 m long WaveSol Light PV panels are tested. The PV tests are conducted to get the current and voltage output with respect to the solar flux. The variation in solar flux represented the time of day and seasons. A 250 W PEM fuel cell is tested to run the desired load. Fuel cell’s hydrogen pressure drop is recorded against the output electrical power and the run time is recorded. System performance is evaluated under different operating and environmental conditions. Data is collected for a wide range of conditions to analyze the usability of renewable energy harvesting system. This energy harvesting method significantly improves the usability and output of the renewable energy sources. It also shows that small renewable energy systems have existing applications.


Sign in / Sign up

Export Citation Format

Share Document