High Speed Method for CCT Estimation: Fundamental, Implemention and Application in Real-Time Simulation

Author(s):  
Mehdi Zareian Jahromi ◽  
Shahram Montaser Kouhsari

AbstractThis paper proposes a hybrid method based on corrected kinetic energy to determine the critical clearing time. The proposed method structure has been implemented utilizing network preserving model to take details of power systems into consideration. To implement proposed method, the initial critical point is estimated using new concept of equal area criterion. Critical corrected kinetic energy is obtained using method which determines the amount of severity of generator contribution in a fault scenario. Due to the latter, the behavior of AVR and governor are taken into account. From initial and corrected kinetic energy of generators and consequently system, high precision critical clearing time is calculated. In order to validate the proposed method, some comprehensive case studies have been conducted on the IEEE9-bus, IEEE39-bus and IEEE68-bus test systems. Some comprehensiveness in considering the details, simplicity in implementation and low computational cost are the outstanding features of the proposed approach. Also, simulation results approve that the proposed approach can be used in real-time application without loss of any detail in transient stability assessment.

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6893
Author(s):  
A. F. Diaz-Alzate ◽  
John E. Candelo-Becerra ◽  
Albert Deluque-Pinto

Real-time transient stability studies are based on voltage angle measures obtained with phasor measurement units (PMUs). A more precise calculation to address transient stability is obtained when using the rotor angles. However, these values are commonly estimated, which leads to possible errors. In this work, the kinetic energy changes in electric machines are used as a criterion for evaluating and correcting transient stability, and to determine the precise time of insertion of a special protection system (SPS). Data from the PMU of the wide-area measurement system (WAMS) are used to construct the SPS. Furthermore, it is assumed that a microcontroller can be located in each generation unit to obtain the synchronized angular velocity. Based on these measurements, the kinetic energy of the system and the respective control action are performed at the appropriate time. The results show that the proposed SPS effectively corrects the oscillations fast enough during the transient stability event. In addition, the proposed method has the advantage that it does not depend on commonly proposed methods, such as system models, the identification of coherent machine groups, or the structure of the network. Moreover, the synchronized angular velocity signal is used, which is not commonly measured in power systems. Validation of the method is carried out in the New England power system, and the findings show that the method is helpful for real-time operation on large power systems.


2007 ◽  
Author(s):  
R. E. Crosbie ◽  
J. J. Zenor ◽  
R. Bednar ◽  
D. Word ◽  
N. G. Hingorani

Author(s):  
R. E. Crosbie ◽  
J. J. Zenor ◽  
D. Word ◽  
R. Bednar ◽  
N. G. Hingorani
Keyword(s):  

2015 ◽  
Vol 16 (2) ◽  
pp. 117-129 ◽  
Author(s):  
M. S. Rahman ◽  
M. A. Mahmud ◽  
H. R. Pota ◽  
M. J. Hossain ◽  
T. F. Orchi

Abstract This paper presents a new distributed agent-based scheme to enhance the transient stability of power systems by maintaining phase angle cohesiveness of interconnected generators through proper relay coordination with critical clearing time (CCT) information. In this distributed multi-agent infrastructure, intelligent agents represent various physical device models to provide dynamic information and energy flow among different physical processes of power systems. The agents can communicate with each other in a distributed manner with a final aim to control circuit breakers (CBs) with CCT information as this is the key issue for maintaining and enhancing the transient stability of power systems. The performance of the proposed scheme is evaluated on a standard IEEE 39-bus New England benchmark system under different large disturbances such as three-phase short-circuit faults and changes in loads within the systems. From the simulation results, it is found that the proposed scheme significantly enhances the transient stability of power systems as compared to a conventional scheme of static CB operation.


Sign in / Sign up

Export Citation Format

Share Document