A Balanced Operation of Static VAR Compensator for Voltage Stability Improvement and Harmonic Minimization

Author(s):  
Abraham Lomi ◽  
Thukaram Dhadbanjan

AbstractThe conduction angles variation in operating a static var compensator can be used to meet the balanced and varying cyclic load of reactive power demand. However, this operation creates harmonics current into the system. An optimum combination of balanced reactive power from SVC and reactive power from the generator based on telephone influence factor (TIF), the total harmonic current factor (IT), and the distribution factor D is proposed. This approach is simulated to a typical distribution network. However, this operation creates harmonics currents into the AC system. This strategy is implemented to a conventional distribution network for various loading conditions is presented.

2015 ◽  
Vol 9 (1) ◽  
pp. 591-599
Author(s):  
Ma Wenchuan ◽  
Zhitong Li ◽  
Chen Daochang ◽  
Qi Jiaming ◽  
Zhou Qiang ◽  
...  

For resolving the problem that power filter cannot work normally because TCR (thyristor controlled reactor) generates extra third harmonic current under asymmetrical voltage, the paper proposes the estimation method of current capacity that TCR generates extra third harmonic current under asymmetrical voltage. Considering extra third harmonic current under asymmetrical voltage, Optimum method based on genetic algorithm is used to design the parameters of power filter. With reactive power compensation and harmonic suppression project of a steel mill as example, the proposed method is simulated by Matlab. Simulation results show optimized power filter can eliminate extra third harmonic current effects under asymmetrical voltage, meet the requirement of reactive power compensation, reduce harmonics current that load injects into system, and guarantee the power filter safe operation under asymmetrical voltage.


2020 ◽  
Vol 13 (3) ◽  
pp. 381-393
Author(s):  
Farhana Fayaz ◽  
Gobind Lal Pahuja

Background:The Static VAR Compensator (SVC) has the capability of improving reliability, operation and control of the transmission system thereby improving the dynamic performance of power system. SVC is a widely used shunt FACTS device, which is an important tool for the reactive power compensation in high voltage AC transmission systems. The transmission lines compensated with the SVC may experience faults and hence need a protection system against the damage caused by these faults as well as provide the uninterrupted supply of power.Methods:The research work reported in the paper is a successful attempt to reduce the time to detect faults on a SVC-compensated transmission line to less than quarter of a cycle. The relay algorithm involves two ANNs, one for detection and the other for classification of faults, including the identification of the faulted phase/phases. RMS (Root Mean Square) values of line voltages and ratios of sequence components of line currents are used as inputs to the ANNs. Extensive training and testing of the two ANNs have been carried out using the data generated by simulating an SVC-compensated transmission line in PSCAD at a signal sampling frequency of 1 kHz. Back-propagation method has been used for the training and testing. Also the criticality analysis of the existing relay and the modified relay has been done using three fault tree importance measures i.e., Fussell-Vesely (FV) Importance, Risk Achievement Worth (RAW) and Risk Reduction Worth (RRW).Results:It is found that the relay detects any type of fault occurring anywhere on the line with 100% accuracy within a short time of 4 ms. It also classifies the type of the fault and indicates the faulted phase or phases, as the case may be, with 100% accuracy within 15 ms, that is well before a circuit breaker can clear the fault. As demonstrated, fault detection and classification by the use of ANNs is reliable and accurate when a large data set is available for training. The results from the criticality analysis show that the criticality ranking varies in both the designs (existing relay and the existing modified relay) and the ranking of the improved measurement system in the modified relay changes from 2 to 4.Conclusion:A relaying algorithm is proposed for the protection of transmission line compensated with Static Var Compensator (SVC) and criticality ranking of different failure modes of a digital relay is carried out. The proposed scheme has significant advantages over more traditional relaying algorithms. It is suitable for high resistance faults and is not affected by the inception angle nor by the location of fault.


Author(s):  
Akram Qashou ◽  
Sufian Yousef ◽  
Abdallah A. Smadi ◽  
Amani A. AlOmari

AbstractThe purpose of this paper is to describe the design of a Hybrid Series Active Power Filter (HSeAPF) system to improve the quality of power on three-phase power distribution grids. The system controls are comprise of Pulse Width Modulation (PWM) based on the Synchronous Reference Frame (SRF) theory, and supported by Phase Locked Loop (PLL) for generating the switching pulses to control a Voltage Source Converter (VSC). The DC link voltage is controlled by Non-Linear Sliding Mode Control (SMC) for faster response and to ensure that it is maintained at a constant value. When this voltage is compared with Proportional Integral (PI), then the improvements made can be shown. The function of HSeAPF control is to eliminate voltage fluctuations, voltage swell/sag, and prevent voltage/current harmonics are produced by both non-linear loads and small inverters connected to the distribution network. A digital Phase Locked Loop that generates frequencies and an oscillating phase-locked output signal controls the voltage. The results from the simulation indicate that the HSeAPF can effectively suppress the dynamic and harmonic reactive power compensation system. Also, the distribution network has a low Total Harmonic Distortion (< 5%), demonstrating that the designed system is efficient, which is an essential requirement when it comes to the IEEE-519 and IEC 61,000–3-6 standards.


2021 ◽  
Vol 1914 (1) ◽  
pp. 012033
Author(s):  
Jinbo Huang ◽  
Jiangxiao Fang ◽  
Liexiang Hu ◽  
Bolong Shi ◽  
Suirong Li ◽  
...  

2021 ◽  
Vol 3 (5) ◽  
Author(s):  
Arvind Sharma ◽  
Mohan Kolhe ◽  
Alkistis Kontou ◽  
Dimitrios Lagos ◽  
Panos Kotsampopoulos

Abstract In this paper, solar photovoltaic hosting capacity within the electrical distribution network is estimated for different buses, and the impacts of high PV penetration are evaluated using power hardware-in-loop testing methods. It is observed that the considered operational constraints (i.e. voltage and loadings) and their operational limits have a significant impact on the hosting capacity results. However, with increasing photovoltaic penetration, some of the network buses reach maximum hosting capacity, which affects the network operation (e.g. bus voltages, line loading). The results show that even distributing the maximum hosting capacity among different buses can increase the bus voltage rise to 9%. To maintain the network bus voltages within acceptable limits, reactive power voltage-based droop control is implemented in the photovoltaic conditioning devices to test the dynamics of the network operation. The results show that implementation of the droop control technique can reduce the maximum voltage rise from 9% to 4% in the considered case. This paper also presents the impact of forming a mesh type network (i.e. from radial network) on the voltage profile during PV penetration, and a comparative analysis of the operational performance of a mesh type and radial type electrical network is performed. It is observed that the cumulative effect of forming a mesh type network along with a droop control strategy can further improve the voltage profile and contribute to increase photovoltaic penetration. The results are verified using an experimental setup of digital real-time simulator and power hardware-in-loop test methods. The results from this work will be useful for estimating the appropriate photovoltaic hosting capacity within a distribution network and implementation of a droop control strategy in power conditioning devices to maintain the network operational parameters within the specified limits. Highlights Voltage and line loading constraints’ combination can reduce PV hosting capacity by 50% as compared to only voltage as a constraint. Implementation of reactive power versus voltage droop control in PV power conditioning device can reduce voltage variation from 9% to 4%. In a PV integrated electrical energy network, line loading can be reduced by 20% if the network is configured from radial to mesh type.


Sign in / Sign up

Export Citation Format

Share Document