Water Dynamics in Turbot (Scophthalmus maximus) Flesh during Baking and Microwave Heating: Nuclear Magnetic Resonance and Magnetic Resonance Imaging Studies

Author(s):  
Kexin Xia ◽  
Haitao Wang ◽  
Linlin Huang ◽  
Wei Xu ◽  
Xiu Zang ◽  
...  

AbstractTurbot is a valuable commercial species because of its high nutrition content. Water redistribution during heating was attributed to temperature-induced protein denaturation and structural shrinkage. Therefore, knowledge about water dynamics provides valuable information related to flesh physical properties (weight loss, color and shear force). Herein, water dynamics in turbot during baking and microwave heating were elucidated by using low field nuclear magnetic resonance (LF-NMR) and magnetic resonance imaging (MRI). Four distinct water populations with relaxation times of 0.20–0.60 ms, 2.00–6.00 ms, 30.00–60.00 ms, and 250.00–560.00 ms were identified. The dramatic variation of water populations during baking and microwave heating indicated protein denaturation and structural shrinkage, which was further verified by MRI and microscopic examination. Furthermore, good linear correlations were observed between NMR parameters and weight loss, color and shear force. The results revealed that the water mobility and distribution in turbot provided valuable information for quality analysis during baking and microwave heating.

Author(s):  
Jiaqi Li ◽  
Kexin Xia ◽  
Yao Li ◽  
Mingqian Tan

AbstractTurbot is a valuable commercial species due to its high nutrient content. Moisture is an important indicator of meat spoilage. This study elucidated distinctive water dynamics in turbot flesh in the freezing–thawing process by nondestructive low-field nuclear magnetic resonance (LF-NMR) and magnetic resonance imaging (MRI) techniques.T2relaxation spectra were utilized to describe the mobility and content of different types of water. Principal component analysis (PCA) revealed a clear discrimination of various freezing–thawing cycles.T1- andT2-weighted MRI provided further visualization of internal information for turbot flesh. Microscopic examination clearly identified protein denaturation and structural shrinkage. Furthermore, NMR parameters and conventional physicochemical parameters of color, shear force and thiobarbituric acid-reactive substances showed good correlations. To sum up, the study revealed that LF-NMR and MRI are promising techniques to portray the relationship between the water dynamics and changes of turbot quality properties during the freezing–thawing process.


2007 ◽  
Vol 30 (4) ◽  
pp. 41
Author(s):  
A. Dechant

On the morning of October 10, 2003, the residents of New York awoke to find that an entire page of their beloved paper, The Times, had been usurped for the sole purpose of flagrant self-promotion and protestation. On his own behalf, Dr. Raymand Damadian had purchased a one page spread bemoaning his exclusion in the Nobel Prize for Medicine that year which had previously been awarded to Paul Laterbur and Peter Mansfield for their contributions to the development of Magnetic Resonance Imaging (MRI). Over the course of the next few months, the public was to witness a series of such articles proclaiming that a shameful wrong had been committed, and that the truth would eventually prove Dr. Damadian’s accusations. That truth lay in the early theoretical and technical foundations that led to the discovery of MRI. Described just after the Second World War, nuclear magnetic resonance (NMR) was hailed as a breakthrough in physical chemistry for which Felix Bloch and Edward Purcell were awarded the Nobel Prize in Physics in 1952. Two decades later, in 1971, Dr. Damadian discovered that differences between the NMR signals of cancerous and normal tissue might provide a rapid means of cancer detection. However, Laterbur and Mansfield were the first to actually demonstrate images of live tissue using the application of magnetic gradients – the key to modern MRI. Though speculation exists that Dr. Damadian may have been excluded from the prize due to his religious beliefs or political rivalry, only time will reveal the whole truth when the Nobel files are opened 50 years hence. Bradley W. The Nobel Prize: Three Investigators Allowed but Two Were Chosen. Journal of Magnetic Resonance Imaging 2004; 19:520. Laterbur P. Image formation by induced local interactions: examples of employing nuclear magnetic resonance. Nature 1973; 242:190-191. Mansfield P, Grannell P. “NMR diffraction in solids?” Journal of Physics C: Solid State Physics 1973; 63:L433-L426.


Sign in / Sign up

Export Citation Format

Share Document