Microstructural evolution of an Al–Mg–Si–Mn– Fe alloy due to Ti and P addition

Author(s):  
Małgorzata Warmuzek ◽  
Adelajda Polkowska ◽  
Viktoria Boyko ◽  
Edward Czekaj ◽  
Konstantin Mikhalenkov ◽  
...  

Abstract This paper presents the results of research on material and microstructural effects in a hypoutectic Al–Mg– Si–Mn–Fe alloy, modified by the addition of Ti and Ti + P, in two series of castings, gravity and pressure. It has been found that the use of high pressure die casting technology allows for significant improvement of mechanical properties, especially tensile strength and plasticity of the examined alloy. On the other hand, the addition of Ti and Ti + P caused different material effects. In gravity castings, the addition of Ti and Ti + P caused a decrease in strength and plasticity, while in high-pressure castings, an increase in the values of these parameters was observed. The microstructural effects related to the foundry technology and those caused by Ti and P additions were revealed, such as differences in the phase composition of the interdendritic eutectics and in the morphology and dispersion of their phase constituents: Mg2Si and α-Al(Fe,Mn)Si.

2020 ◽  
Vol 17 (1) ◽  
pp. 4-10
Author(s):  
Ferencz Peti ◽  
Petru Serban

AbstractThis article is a research on the effect of material segregations due to squeeze parameters on mechanical properties of high pressure die cast parts. The technology of squeezing is applied in high pressure die casting technology with the aim to improve the internal material health of the castings from aluminium alloys, such as AlSi9Cu3(Fe), components incorporated in assemblies as mechanical and hydraulic parts. The objective of this article is to determinate the influence of the secondary effects of squeeze technology on the mechanical properties of parts produced from AlSi9Cu3(Fe) alloys, with HPDC technology.


2013 ◽  
Vol 765 ◽  
pp. 64-68 ◽  
Author(s):  
Feng Yan ◽  
Shou Xun Ji ◽  
Zhong Yun Fan

In this work we found that the addition of excess Mg can significantly improve the mechanical properties of pseudo-binary Al-Mg2Si alloys after high pressure die casting (HPDC). Al-8Mg2Si-6Mg alloy offered an excellent combination of high strength and reasonable ductility. Excess Mg lowers the Mg2Si content in the eutectic reaction and promotes the formation of Mg2Si as the primary phase, and this is believed to be the origin of improved mechanical performance.


2008 ◽  
Vol 141-143 ◽  
pp. 151-156 ◽  
Author(s):  
E.P. Masuku ◽  
Gonasagren Govender ◽  
L. Ivanchev ◽  
Heinrich Möller

Rheocasting of alloys A206 and A201 was investigated in this study. Conical bars with different silver contents were produced using CSIR rheoprocess technology, together with high pressure die casting. The results showed that addition of Ag to alloy A206 increased the mechanical properties of the alloy. However, the addition of Ag also resulted in Cu-rich phases to precipitate at the grain boundaries of the as-cast material. The solution treatment used in this study was unable to dissolve all of this phase, especially in the 1.12%Ag-containing alloy. This resulted in slightly decreased mechanical properties compared to the 0.63%Ag-containing alloy. The T6 mechanical properties (strength and elongation) obtained in this study for rheocast A206 and A201 are better than those reported for permanent mould castings of alloy A206 and A201.


2014 ◽  
Vol 915-916 ◽  
pp. 1074-1077
Author(s):  
Wu Hu ◽  
Ming Long Kang ◽  
Jian Min Zeng

The distribution of temperatures and stresses in the die during high pressure die casting are computed through commercially finite element software developed by Wincast team, Germany. The deformation of the die during its continual running is predicted under the conditions without and with air cooling. The simulated results show that the regions of die, which contact with the casting, is subjected to compressed stresses and the other regions of the die subjected to tensile stresses. Compressed stresses are changed steeply from tensile to compress on the boundary between the casting and the inner cavity walls, which will results in hot-fatigue in those regions of the die. Setting cooling channel within the die is an efficient measure for eliminating hot-fatigue and prolonging life of the die.


Sign in / Sign up

Export Citation Format

Share Document