Gravity modulation effect on weakly nonlinear thermal convection in a fluid layer bounded by rigid boundaries

Author(s):  
Palle Kiran

Abstract This paper investigates the effect of gravity modulation on Rayleigh–Bénard convection using the rigid isothermal boundary conditions. We calculate heat transfer results using the Nusselt and mean Nusselt numbers through the finite-amplitude of convection, which we got from the Ginzburg–Landau equation (GLE). The Ginzburg–Landau equation is derived analytically from the Fredholm solvability condition at third order. The finite amplitude equation (GLE) is a function of system parameters and solved numerically. The gravity modulation considered in terms of steady and sinusoidal parts. The sinusoidal part defines gravity modulation in terms of amplitude and frequency. Our study shows that gravity modulation controls the heat transfer results. The amplitude of modulation enhances heat transfer for low frequencies and diminishes for high frequencies. Further, we found that rigid isothermal boundary conditions are diminishing heat transfer than free and isothermal boundaries. Finally, we concluded that rigid isothermal boundary conditions and gravity modulation controls heat transfer results.

2020 ◽  
Vol 25 (1) ◽  
pp. 75-91
Author(s):  
S.H. Manjula ◽  
P. Kiran ◽  
P. Raj Reddy ◽  
B.S. Bhadauria

AbstractA weakly nonlinear thermal instability is investigated under rotation speed modulation. Using the perturbation analysis, a nonlinear physical model is simplified to determine the convective amplitude for oscillatory mode. A non-autonomous complex Ginzburg-Landau equation for the finite amplitude of convection is derived based on a small perturbed parameter. The effect of rotation is found either to stabilize or destabilize the system. The Nusselt number is obtained numerically to present the results of heat transfer. It is found that modulation has a significant effect on heat transport for lower values of ωf while no effect for higher values. It is also found that modulation can be used alternately to control the heat transfer in the system. Further, oscillatory mode enhances heat transfer rather than stationary mode.


2006 ◽  
Vol 16 (01) ◽  
pp. 1-17 ◽  
Author(s):  
A. C. CASAL ◽  
J. I. DÍAZ

We show how to stabilize the uniform oscillations of the complex Ginzburg–Landau equation with periodic boundary conditions by means of some global delayed feedback. The proof is based on an abstract pseudo-linearization principle and a careful study of the spectrum of the linearized operator.


2002 ◽  
Vol 12 (10) ◽  
pp. 2219-2228 ◽  
Author(s):  
M. ARGENTINA ◽  
O. DESCALZI ◽  
E. TIRAPEGUI

We study the stationary solutions of the real Ginzburg–Landau equation with periodic boundary conditions in a finite box. We show explicitly how to construct nucleation solutions allowing transitions between stable plane waves.


Author(s):  
Laurent Nana ◽  
Alexander B. Ezersky ◽  
Innocent Mutabazi

Experiments in extended systems, such as the counter-rotating Couette–Taylor flow or the Taylor–Dean flow system, have shown that patterns with vanishing amplitude may exhibit periodic spatio-temporal defects for some range of control parameters. These observations could not be interpreted by the complex Ginzburg–Landau equation (CGLE) with periodic boundary conditions. We have investigated the one-dimensional CGLE with homogeneous boundary conditions. We found that, in the ‘Benjamin–Feir stable’ region, the basic wave train bifurcates to state with periodic spatio-temporal defects. The numerical results match the observations quite well. We have built a new state diagram in the parameter plane spanned by the criticality (or equivalently the linear group velocity) and the nonlinear frequency detuning.


Author(s):  
Виктор Иванович Паасонен ◽  
Михаил Петрович Федорук

Решение актуальной задачи повышения порядка точности разностных методов решения задач нелинейной волоконной оптики выше четвертого путем непосредственного построения сложных схем на расширенных шаблонах сопряжено с усложнением матрицы системы и с затруднениями в постановке дополнительных граничных условий. Кроме того, при таком подходе не происходит одновременное повышение точности также и по эволюционной переменной. В данной работе рассматривается альтернативный путь - применение экстраполяции Ричардсона, которая сводится к построению подходящих линейных комбинаций решений на различных сетках. Этот способ позволяет повышать порядок точности по обеим переменным, избегая при этом проблем с усложнением шаблонов, постановкой дополнительных граничных условий и реализацией алгоритмов. Как средство дополнительного улучшения точности наряду с простыми (однократными) поправками исследуются также двойные поправки на основе экстраполяции Ричардсона. Методика протестирована на нескольких точных решениях уравнения Гинзбурга - Ландау Increasing the order of accuracy for difference methods is an actual problem in nonlinear fiber optics. Computations, which use higher than the fourth order of accuracy by the direct construction of complex circuits on extended templates pose the complication of the system matrix and difficulties in setting additional boundary conditions. In addition, with this approach, there is no simultaneous increase in accuracy for the evolutionary variable. In this paper, we consider an alternative way, namely, application of the Richardson extrapolation, which reduces to construction of suitable linear combinations for solutions on various grids. This method allows improving the order of accuracy for both variables, while avoiding problems associated with the complication of templates, implementation of algorithms and setting additional boundary conditions. Double corrections are also considered to further improve accuracy. The technique was tested on exact solutions of the Ginzburg - Landau equation


Sign in / Sign up

Export Citation Format

Share Document