Predicting total electron content in ionosphere using vector autoregression model during geomagnetic storm

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sumitra Iyer ◽  
Alka Mahajan

Abstract The ionospheric total electron content (TEC) severely impacts the positional accuracy of a single frequency Global Positioning System (GPS) receiver at the equatorial latitudes. The ionosphere causes a frequency-dependent group delay in the GPS-ranging signals, which reduces the receiver’s accuracy. Further, the variations in TEC due to various space weather phenomena make the ionosphere’s behaviour nonhomogeneous and complex. Hence, developing an accurate forecast model that can track the dynamic behaviour of the ionosphere remains a challenge. However, advances in emerging data-driven algorithms have been found helpful in tracking non-stationary behavior in TEC. These models help forecast the delays in advance. The multivariate Vector Autoregression model (VAR) predicts the Ionospheric TEC in the proposed model. The prediction model uses input data compiled in real-time from the lag values of incoming TEC data and features extracted from TEC. The TEC is predicted in real-time and tested for different prediction intervals. The metrics – Mean Percentage Error (MAPE), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE) are used for testing and validating the accuracy of the model statistically. Testing the predicted output accuracy is also done with the dynamic time warping (DTW) algorithm by comparing it with the actual value obtained from the dual-frequency receiver. The model is tested for storm days of the year 2015 for Bangalore and Hyderabad stations and found to be reliable and accurate. A prediction interval of twenty-minute shows the highest accuracy with an error within 10 TECU for all the storm days.

Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1138 ◽  
Author(s):  
Liang Zhang ◽  
Yibin Yao ◽  
Wenjie Peng ◽  
Lulu Shan ◽  
Yulin He ◽  
...  

The prevalence of real-time, low-cost, single-frequency, decimeter-level positioning has increased with the development of global navigation satellite systems (GNSSs). Ionospheric delay accounts for most errors in real-time single-frequency GNSS positioning. To eliminate ionospheric interference in real-time single-frequency precise point positioning (RT-SF-PPP), global ionospheric vertical total electron content (VTEC) product is designed in the next stage of the International GNSS Service (IGS) real-time service (RTS). In this study, real-time generation of a global ionospheric map (GIM) based on IGS RTS is proposed and assessed. There are three crucial steps in the process of generating a real-time global ionospheric map (RTGIM): estimating station differential code bias (DCB) using the precise point positioning (PPP) method, deriving slant total electron content (STEC) from PPP with raw observations, and modeling global vertical total electron content (VTEC). Experiments were carried out to validate the algorithm’s effectiveness. First, one month’s data from 16 globally distributed IGS stations were used to validate the performance of DCB estimation with the PPP method. Second, 30 IGS stations were used to verify the accuracy of static PPP with raw observations. Third, the modeling of residuals was assessed in high and quiet ionospheric activity periods. Afterwards, the quality of RTGIM products was assessed from two aspects: (1) comparison with the Center for Orbit Determination in Europe (CODE) global ionospheric map (GIM) products and (2) determination of the performance of RT-SF-PPP with the RTGIM. Experimental results show that DCB estimation using the PPP method can realize an average accuracy of 0.2 ns; static PPP with raw observations can achieve an accuracy of 0.7, 1.2, and 2.1 cm in the north, east, and up components, respectively. The average standard deviations (STDs) of the model residuals are 2.07 and 2.17 TEC units (TECU) for moderate and high ionospheric activity periods. Moreover, the average root-mean-square (RMS) error of RTGIM products is 2.4 TECU for the one-month moderate ionospheric period. Nevertheless, for the high ionospheric period, the RMS is greater than the RMS in the moderate period. A sub-meter-level horizontal accuracy and meter-level vertical accuracy can be achieved when the RTGIM is employed in RT-SF-PPP.


2020 ◽  
Vol 12 (20) ◽  
pp. 3354
Author(s):  
Yang Wang ◽  
Yibin Yao ◽  
Liang Zhang ◽  
Mingshan Fang

Ionospheric delay is a crucial error source and determines the source of single-frequency precise point positioning (SF-PPP) accuracy. To meet the demands of real-time SF-PPP (RT-SF-PPP), several international global navigation satellite systems (GNSS) service (IGS) analysis centers provide real-time global ionospheric vertical total electron content (VTEC) products. However, the accuracy distribution of VTEC products is nonuniform. Proposing a refinement method is a convenient means to obtain a more accuracy and consistent VTEC product. In this study, we proposed a refinement method of a real-time ionospheric VTEC model for China and carried out experiments to validate the model effectiveness. First, based on the refinement method and the Centre National d’Études Spatiales (CNES) VTEC products, three refined real-time global ionospheric models (RRTGIMs) with one, three, and six stations in China were built via GNSS observations. Second, the slant total electron content (STEC) and Jason-3 VTEC were used as references to evaluate VTEC accuracy. Third, RT-SF-PPP was used to evaluate the accuracy in the positioning domain. Results showed that even if using only one station to refine the global ionospheric model, the refined model achieved a better performance than CNES and the Center for Orbit Determination in Europe (CODE). The refinement model with six stations was found to be the best of the three refinement models.


2020 ◽  
Vol 12 (7) ◽  
pp. 1198 ◽  
Author(s):  
Andreas Goss ◽  
Michael Schmidt ◽  
Eren Erdogan ◽  
Florian Seitz

The ionosphere is one of the largest error sources in GNSS (Global Navigation Satellite Systems) applications and can cause up to several meters of error in positioning. Especially for single-frequency users, who cannot correct the ionospheric delay, the information about the state of the ionosphere is mandatory. Dual- and multi-frequency GNSS users, on the other hand, can correct the ionospheric effect on their observations by linear combination. However, real-time applications such as autonomous driving or precision farming, require external high accuracy corrections for fast convergence. Mostly, this external information is given in terms of grids or coefficients of the vertical total electron content (VTEC). Globally distributed GNSS stations of different networks, such as the network of the International GNSS Services (IGS), provide a large number of multi-frequency observations which can be used to determine the state of the ionosphere. These data are used to generate Global Ionosphere Maps (GIM). Due to the inhomogeneous global distribution of GNSS real-time stations and especially due to the large data gaps over oceanic areas, the global VTEC models are usually limited in their spatial and spectral resolution. Most of the GIMs are mathematically based on globally defined radial basis functions, i.e., spherical harmonics (SH), with a maximum degree of 15 and provided with a spatial resolution of 2.5 ° × 5 ° in latitude and longitude, respectively. Regional GNSS networks, however, offer dense clusters of observations, which can be used to generate regional VTEC solutions with a higher spectral resolution. In this study, we introduce a two-step model (TSM) comprising a global model as the first step and a regional model as the second step. We apply polynomial and trigonometric B-spline functions to represent the global VTEC. Polynomial B-splines are used for modelling the finer structures of VTEC within selected regions, i.e., the densification areas. The TSM provides both, a global and a regional VTEC map at the same time. In order to study the performance, we apply the developed approach to hourly data of the global IGS network as well as the EUREF network of the European region for St. Patrick storm in March 2015. For the assessment of the generated maps, we use the dSTEC analysis and compare both maps with different global and regional products from the IGS Ionosphere Associated Analysis Centers, e.g., the global product from CODE (Berne, Switzerland) and from UPC (Barcelona, Spain), as well as the regional maps from ROB (Brussels, Belgium). The assessment shows a significant improvement of the regional VTEC representation in the form of the generated TSM maps. Among all other products used for comparison, the developed regional one is of the highest accuracy within the selected time span. Since the numerical tests are performed using hourly data with a latency of one to two hours, the presented procedure is seen as an intermediate step for the generation of high precision regional real-time corrections for modern applications.


1988 ◽  
Vol 129 ◽  
pp. 551-552
Author(s):  
G. Petit ◽  
J. F. Lestrade ◽  
C. Boucher ◽  
F. Biraud ◽  
A. Rius ◽  
...  

The GRIG-2 geodetic VLBI experiment was conducted in 1985, linking for the first time South America, Europe and Africa. At the single frequency band of 1.66 GHz which was used, the monitoring of the ionosphere is a critical aspect and several predictions of Total Electron Content (TEC) were used. One of them is derived from dual band Doppler observations of TRANSIT satellites, which were simultaneously conducted. The influence of these models on the solution is presented, with comparisons with other VLBI solutions. Decimetric accuracy has been achieved.


2021 ◽  
pp. 14-21
Author(s):  
P. А. Budnikov ◽  
◽  
V. V. Alpatov ◽  

The features of using survey GNSS receivers for real-time ionosphere monitoring based on high orbital ionosphere tomography network are presented. The related problems and solutions methods are described. The algorithms for calculating total electron content and scintillation indices, that allow reducing errors and noise, are proposed. Special attention is given to the methods reducing data loss during processing. A model of the electron content peak height used for mapping ionospheric parameters is also introduced.


Sign in / Sign up

Export Citation Format

Share Document