Artificial neural network for improving the estimation of weighted mean temperature in Egypt

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mohamed Amin Abdelfatah

Abstract One of the most important parameters in meteorological data is the Precipitable Water Vapor (PWV). It can be measured by radiosonde stations (RS), but the fact is that RS are not available in all times. Therefore, GNSS satellite signals are considered an accurate function to compute it within a conversation factor. The conversation factor depends on the weighted mean temperature ( T m {T_{m}} ) which is non-measurable. In this research, a new idea to estimate T m {T_{m}} is provided, which can potentially contribute to the GNSS meteorology. The T m {T_{m}} was designed, including six RS, over one year in Egypt as input parameters. The machine learning (ML) model has been utilized in the design (IBM SPSS Statistics 25 package). The new model needs to collect the day of year (DOY), site location information and surface temperature to predict the T m {T_{m}} . The results of ML model and four other empirical models (Bevis et al., Wayan and Iskanda, Yao and Elhaty et al. models) are compared. The validation work is carried out, using the radiosonde data, and results indicate that the new T m {T_{m}} model can achieve the best performance with RMS of 1.7 K.

Author(s):  
Z. X. Chen ◽  
L. L. Liu ◽  
L. K. Huang ◽  
Q. T. Wan ◽  
X. Q. Mo

Abstract. The tropospheric weighted mean temperature (Tm) is one of the key characteristic parameters in the troposphere, which plays an important role in the conversion of Zenith Wet Delay (ZWD) to atmospheric Precipitable Water Vapor (PWV). The precision of Global Navigation Satellite System (GNSS) inversion of PWV can be significantly improved with the accurate calculation of Tm. Due to the strong nonlinear mapping ability of Back Propagation (BP) neural network, the algorithm can be used to excavate the law with massive data. In term of the nonlinear and non-stationary characteristics of GNSS precipitable water vapor, in this paper, we proposes a forecast method of GNSS precipitable water vapor based on BP neural network, which can modelling the weighted mean temperature of troposphere. The traditional BP neural network has some shortcomings, such as large amount of calculation, long training time and easy to appear “over-fitting” phenomenon and so on. In order to optimize the deficiency and numerical simulation, the three characteristic values include water vapor pressure, surface pressure and surface temperature provided are selected as input parameters, named as BP_Tm. The optimal initialization parameters of the model were obtained from the 2016 radiosonde data of 89 radiosonde stations in China, and the modeling and accuracy verification were conducted with the 2017 radiosonde data,and the accuracy of the new model was compared with the common regional Tm model. The results show the BP_Tm model has good simulation accuracy, the average deviation is −0.186K, and the root mean square error is 3.144K. When simulating the weighted mean temperature of a single station, the accuracy of the four models to simulate Tm is compared and analyzed, which the BP_Tm model can obtain good accuracy and reflect better stability and reliability.


2021 ◽  
Vol 13 (13) ◽  
pp. 2644
Author(s):  
Liying Cao ◽  
Bao Zhang ◽  
Junyu Li ◽  
Yibin Yao ◽  
Lilong Liu ◽  
...  

Accurate tropospheric delay (TD) and weighted mean temperature (Tm) are important for Global Navigation Satellite System (GNSS) positioning and GNSS meteorology. For this purpose, plenty of empirical models have been built to provide estimates of TD and Tm. However, these models cannot resolve TD and Tm variations at synoptic timescales since they only model the average annual, semi-annual, and/or daily variations. As a result, the existed empirical models cannot perform well under extreme weather conditions. To address this limitation, we propose to estimate Zenith Hydrostatic Delay (ZHD), Zenith Wet Delay (ZWD), and Tm directly from the stratified numerical weather forecasting products of the mesoscale version of the Global/Regional Assimilation and PrEdiction System (GRAPES_MESO) of China. The GRAPES_MESO forecasting data has a temporal resolution of 3 h, which provides the opportunity to resolve the synoptic variation. However, it is found that the estimated ZWD and Tm exhibit apparent systematic deviation from in situ observation-based estimates, which is due to the inherent biases in the GRAPES_MESO data. To solve this problem, we propose to correct these biases using a linear model and a spherical cap harmonic model. The estimates after correction are termed as the “CTropGrid” products. When validated by the radiosonde data, the CTropGrid product has biases of 1.5 mm, −0.7 mm, and −0.1 K, and Root Mean Square (RMS) error of 8.9 mm, 20.2 mm, and 1.5 K for ZHD, ZWD, and Tm. Compared to the widely used GPT2w model, the CTropGrid products have improved the accuracies of ZHD, ZWD, and Tm by 11.9%, 55.6%, and 60.5% in terms of RMS. When validating the Zenith Tropospheric Delay (ZTD) products (the sum of ZHD and ZWD) using the IGS ZTD data, the CTropGrid ZTD has a bias of −0.7 mm and an RMS of 35.8 mm, which is 22.7% better than the GPT2w model in terms of RMS. Besides the accuracy improvements, the CTropGrid products well model the synoptic-scale variations of ZHD, ZWD, and Tm. Compared to the existing empirical models that only capture the tidal (seasonal and/or diurnal) variations, the CTropGrid products capture well the non-tidal variations of ZHD, ZWD, and Tm, which enhances the tropospheric delay corrections and GNSS water vapor monitoring at synoptic timescales. Therefore, the CTropGrid product is an important progress in GNSS positioning and GNSS meteorology.


2021 ◽  
Vol 13 (15) ◽  
pp. 3004
Author(s):  
Wenliang Gao ◽  
Jingxiang Gao ◽  
Liu Yang ◽  
Mingjun Wang ◽  
Wenhao Yao

In the meteorology of Global Navigation Satellite System, the weighted mean temperature (Tm) is a key parameter in the process of converting the zenith wetness delay into precipitable water vapor, and it plays an important role in water vapor monitoring. In this research, two deep learning algorithms, namely, recurrent neural network (RNN) and long short-term memory neural network (LSTM), were used to build a high-precision weighted mean temperature model for China using their excellent time series memory capability. The model needs site location information and measured surface temperature to predict the weighted mean temperature. We used data from 118 stations in and around China provided by the Integrated Global Radiosonde Archive from 2010 to 2015 to train the model and data from 2016 for model testing. The root mean square error (RMSE) of the RNN_Tm and LSTM_Tm models were 3.01K and 2.89K, respectively. Compared with the values calculated by the empirical GPT3 model, the accuracy was improved by 31.1% (RNN_Tm) and 33.9% (LSTM_Tm). In addition, we selected another 10 evenly distributed stations in China and used the constructed model to test the prediction capability of the weighted mean temperature from 2010 to 2016. The RMSE values were 2.95K and 2.86K, which proved that the model also exhibits high generalization in non-modeling sites in China. In general, the RNN_Tm and LSTM_Tm models have a good performance in weighted mean temperature prediction.


2021 ◽  
Vol 13 (19) ◽  
pp. 3887
Author(s):  
Hai Zhu ◽  
Kejie Chen ◽  
Guanwen Huang

The weighted mean temperature (Tm) is a crucial parameter for determining the tropospheric delay in transforming precipitable water vapor. We used the reanalysis data provided by European Centre for Medium-Range Weather Forecasts (ECMWF) to analyze the distribution characteristics of Tm in the vertical direction in China. To address the problem that the precision of the traditional linear function model is limited in fitting the Tm profile, a scheme using the linear and Fourier functions to fit the Tm profile was constructed. Based on the least squares principle (LSQ) to fit the change in its coefficients over time, a Tm model for China with nonlinear elevation correction (CTm-h) was constructed. The experimental results show that, using ECMWF and radiosonde data to evaluate the precision of the CTm-h model, the RMS is 3.43 K and 4.64 K, respectively. Compared to GPT2w, the precision of the CTm-h model in China is increased by about 26.8%. The CTm-h model provides a significant improvement in the correction effect of Tm in the vertical direction, and the Tm profile calculated by the model is closer to the reference value.


2020 ◽  
Vol 12 (7) ◽  
pp. 1098
Author(s):  
Pedro Mateus ◽  
João Catalão ◽  
Virgílio B. Mendes ◽  
Giovanni Nico

The Global Navigation Satellite System (GNSS) meteorology contribution to the comprehension of the Earth’s atmosphere’s global and regional variations is essential. In GNSS processing, the zenith wet delay is obtained using the difference between the zenith total delay and the zenith hydrostatic delay. The zenith wet delay can also be converted into precipitable water vapor by knowing the atmospheric weighted mean temperature profiles. Improving the accuracy of the zenith hydrostatic delay and the weighted mean temperature, normally obtained using modeled surface meteorological parameters at coarse scales, leads to a more accurate and precise zenith wet delay estimation, and consequently, to a better precipitable water vapor estimation. In this study, we developed an hourly global pressure and temperature (HGPT) model based on the full spatial and temporal resolution of the new ERA5 reanalysis produced by the European Centre for Medium-Range Weather Forecasts (ECMWF). The HGPT model provides information regarding the surface pressure, surface air temperature, zenith hydrostatic delay, and weighted mean temperature. It is based on the time-segmentation concept and uses the annual and semi-annual periodicities for surface pressure, and annual, semi-annual, and quarterly periodicities for surface air temperature. The amplitudes and initial phase variations are estimated as a periodic function. The weighted mean temperature is determined using a 20-year time series of monthly data to understand its seasonality and geographic variability. We also introduced a linear trend to account for a global climate change scenario. Data from the year 2018 acquired from 510 radiosonde stations downloaded from the National Oceanic and Atmospheric Administration (NOAA) Integrated Global Radiosonde Archive were used to assess the model coefficients. Results show that the GNSS meteorology, hydrological models, Interferometric Synthetic Aperture Radar (InSAR) meteorology, climate studies, and other topics can significantly benefit from an ERA5 full-resolution model.


2017 ◽  
Vol 10 (6) ◽  
pp. 2045-2060 ◽  
Author(s):  
Changyong He ◽  
Suqin Wu ◽  
Xiaoming Wang ◽  
Andong Hu ◽  
Qianxin Wang ◽  
...  

Abstract. The Global Positioning System (GPS) is a powerful atmospheric observing system for determining precipitable water vapour (PWV). In the detection of PWV using GPS, the atmospheric weighted mean temperature (Tm) is a crucial parameter for the conversion of zenith tropospheric delay (ZTD) to PWV since the quality of PWV is affected by the accuracy of Tm. In this study, an improved voxel-based Tm model, named GWMT-D, was developed using global reanalysis data over a 4-year period from 2010 to 2013 provided by the United States National Centers for Environmental Prediction (NCEP). The performance of GWMT-D was assessed against three existing empirical Tm models – GTm-III, GWMT-IV, and GTm_N – using different data sources in 2014 – the NCEP reanalysis data, surface Tm data provided by Global Geodetic Observing System and radiosonde measurements. The results show that the new GWMT-D model outperforms all the other three models with a root-mean-square error of less than 5.0 K at different altitudes over the globe. The new GWMT-D model can provide a practical alternative Tm determination method in real-time GPS-PWV remote sensing systems.


Sign in / Sign up

Export Citation Format

Share Document