Adsorption and Photodegradation of Humic Acids by Nano-Structured TiO2 for Water Treatment

2007 ◽  
Vol 10 (1) ◽  
Author(s):  
P. F. Lee ◽  
D. D. Sun ◽  
J. O. Leckie

AbstractRemoval of natural organic matter (NOM) is always a concern in water treatment, particularly the formation of chlorinated organic compounds such as trihalomethane (THM) - toxic by-products resulting from the chlorination and disinfection of residual organic compound. TiO

2013 ◽  
Vol 51 (31-33) ◽  
pp. 6288-6298 ◽  
Author(s):  
Jei-cheol Jeon ◽  
Chang-Hyun Jo ◽  
Ilhwan Choi ◽  
Soon-Buhm Kwon[a] Ennkyung Jang ◽  
Tae-Mun Hwang

Proceedings ◽  
2020 ◽  
Vol 57 (1) ◽  
pp. 29
Author(s):  
Irina Fierascu ◽  
Roxana Ioana Brazdis ◽  
Anda Maria Baroi ◽  
Toma Fistos ◽  
Corina Bradu ◽  
...  

Pollution of water sources with nitrogen ions and chlorinated organic compounds (COCl), such as some pesticides or their degradation products [...]


2016 ◽  
Vol 30 (1) ◽  
pp. 81-85 ◽  
Author(s):  
Beata Malczewska

Abstract Natural organic matter (Natural Organic Matter – NOM) represents a mixture of diverse chemical structure and different properties. The humic substances constitute an important component of NOM, and they are responsible for water color and taste, also they can contribute to the formation of disinfection by-products (DBP). Therefore, removal of NOM is considered to be one of the important technological operations during water treatment. The present study evaluate the effectiveness of NOM removal from water by one of the hybrid process and the results showed that the use of this process allows to improve the efficiency of water purification and also reduces the intensity of blocking membranes. Batch adsorption tests of heated aluminum oxide particles (HAOPs) showed that the NOM removal efficiency has been between 86 to 77% at a dose 5 and 10 mg·dm−3, respectively for both tested natural water.


2018 ◽  
Vol 18 (6) ◽  
pp. 1906-1914
Author(s):  
Mariola Rajca ◽  
Agnieszka Włodyka-Bergier ◽  
Michał Bodzek

Abstract In the article, the results of the research on reactivity of natural organic matter in regard to disinfection by-products, specifically trihalomethanes (THM) formation, with the use of model waters, are discussed. Additionally, the evaluation of different processes used in water treatment, i.e. photocatalysis, MIEX®DOC and membrane processes, is made. It was found that the affinity of particular natural organic matter compounds to form chlorination by-products could be arranged in a series: hydrophobic fraction (HA) > hydrophilic fraction (FA). The applied treatment processes efficiently decreased the concentration of disinfection by-products (DBPs) precursors and characterized with different removal mechanisms. Water treated by means of photocatalysis (specific potential of ∑THM was 30 μg/mg dissolved organic carbon (DOC) for HA and 12 μg/mg DOC for FA) revealed lower affinity to form chlorination by-products in comparison with water undergone to MIEX®DOC process (specific potential of ∑THM was 38 μg/mg DOC for HA and 29 μg/mg DOC for FA). Moreover, combination of those methods with membrane processes efficiently reduced DBPs formation potential. In nanofiltration effluents DBPs potential were very low and equalled to 50 μg/L for HA and 15 μg/L for FA.


2015 ◽  
Vol 802 ◽  
pp. 513-518
Author(s):  
Nurazim Ibrahim ◽  
Hamidi Abdul Aziz ◽  
Mohd Suffian Yusoff

Natural organic matter (NOM) in water reacts with chlorine or other disinfectants and form hazardous disinfectant by-products (DBPs). This study aimed to detect the presence of NOM in a conventional water distribution system using UV absorbance at 254 nm as a surrogate. Two water treatment plants were selected, namely, Jalan Baharu Water Treatment Plant (JBWTP) and Lubok Buntar Water Treatment Plant (LBWTP). Aside from determining the amount of NOM, the reduction of UV254after completing the series of treatments (coagulation, flocculation, sedimentation, filtration, and disinfection) was also observed. The presence of UV254in both raw water and treated water samples confirmed the presence of NOM. The concentration of UV254recorded at JBWTP and LBWTP were 0.14 and 0.13 cm−1, respectively. After the treatment processes, the concentration was reduced to 0.04 cm−1for JBWTP and 0.03 cm−1for LBWTP. These results indicated that the water supply in both plants contains DBP precursors and implied the possibility of DBP formation in the system. Moreover, the percentage reduction of UV254recorded were 69% and 75% for JBWTP and LBWTP, respectively.


2011 ◽  
Vol 25 (12) ◽  
pp. 3005-3015 ◽  
Author(s):  
Margarida Ribau Teixeira ◽  
Sónia M. Rosa ◽  
Vânia Sousa

Sign in / Sign up

Export Citation Format

Share Document