scholarly journals Performance advantages of CPML over UPML absorbing boundary conditions in FDTD algorithm

2017 ◽  
Vol 68 (1) ◽  
pp. 47-53 ◽  
Author(s):  
Branko D. Gvozdic ◽  
Dusan Z. Djurdjevic

Abstract Implementation of absorbing boundary condition (ABC) has a very important role in simulation performance and accuracy in finite difference time domain (FDTD) method. The perfectly matched layer (PML) is the most efficient type of ABC. The aim of this paper is to give detailed insight in and discussion of boundary conditions and hence to simplify the choice of PML used for termination of computational domain in FDTD method. In particular, we demonstrate that using the convolutional PML (CPML) has significant advantages in terms of implementation in FDTD method and reducing computer resources than using uniaxial PML (UPML). An extensive number of numerical experiments has been performed and results have shown that CPML is more efficient in electromagnetic waves absorption. Numerical code is prepared, several problems are analyzed and relative error is calculated and presented.

2013 ◽  
Vol 23 (11) ◽  
pp. 2129-2154 ◽  
Author(s):  
HÉLÈNE BARUCQ ◽  
JULIEN DIAZ ◽  
VÉRONIQUE DUPRAT

This work deals with the stability analysis of a one-parameter family of Absorbing Boundary Conditions (ABC) that have been derived for the acoustic wave equation. We tackle the problem of long-term stability of the wave field both at the continuous and the numerical levels. We first define a function of energy and show that it is decreasing in time. Its discrete form is also decreasing under a Courant–Friedrichs–Lewy (CFL) condition that does not depend on the ABC. Moreover, the decay rate of the continuous energy can be determined: it is exponential if the computational domain is star-shaped and this property can be illustrated numerically.


Geophysics ◽  
1989 ◽  
Vol 54 (9) ◽  
pp. 1153-1163 ◽  
Author(s):  
R. A. Renaut ◽  
J. Petersen

Numerical solution of the two‐dimensional wave equation requires mapping from a physical domain without boundaries to a computational domain with artificial boundaries. For realistic solutions, the artificial boundaries should cause waves to pass directly through and thus mimic total absorption of energy. An artificial boundary which propagates waves in one direction only is derived from approximations to the one‐way wave equation and is commonly called an absorbing boundary. Here we investigate order 2 absorbing boundary conditions which include the standard paraxial approximation. Absorption properties are compared analytically and numerically. Our numerical results confirm that the [Formula: see text] or Chebychev‐Padé approximations are best for wide‐angle absorption and that the Chebychev or least‐squares approximations are best for uniform absorption over a wide range of incident angles. Our results also demonstrate, however, that the boundary conditions are stable for varying ranges of Courant number (ratio of time step to grid size). We prove that there is a stability barrier on the Courant number specified by the coefficients of the boundary conditions. Thus, proving stability of the interior scheme is not sufficient. Furthermore, waves may radiate spontaneously from the boundary, causing instability, even if the stability bound on the Courant number is satisfied. Consequently, the Chebychev and least‐squares conditions may be preferred for wide‐angle absorption also.


Author(s):  
Bülent Düz ◽  
René H. M. Huijsmans ◽  
Peter R. Wellens ◽  
Mart J. A. Borsboom ◽  
Arthur E. P. Veldman ◽  
...  

Numerical simulations of wave phenomena necessarily have to be carried out in a limited computational domain. This implies that incoming waves should be prescribed properly, and the outgoing waves should leave the domain without causing reflections. In this paper we will present an enhanced type of such generating and absorbing boundary conditions (GABC). The new approach is applied in studies of extreme hydrodynamic wave impact on rigid and floating structures in offshore and coastal engineering, for which the VOF-based CFD simulation tool ComFLOW has been developed.


Sign in / Sign up

Export Citation Format

Share Document