scholarly journals Reconstructing conductivities with boundary corrected D-bar method

Author(s):  
Samuli Siltanen ◽  
Janne P. Tamminen

AbstractThe aim of electrical impedance tomography is to form an image of the conductivity distribution inside an unknown body using electric boundary measurements. The computation of the image from measurement data is a non-linear ill-posed inverse problem and calls for a special regularized algorithm. One such algorithm, the so-called D-bar method, is improved in this work by introducing new computational steps that remove the so far necessary requirement that the conductivity should be constant near the boundary. The numerical experiments presented suggest two conclusions. First, for most conductivities arising in medical imaging, it seems the previous approach of using a best possible constant near the boundary is sufficient. Second, for conductivities that have high contrast features at the boundary, the new approach produces reconstructions with smaller quantitative error and with better visual quality.

Author(s):  
Thilo Strauss ◽  
Taufiquar Khan

AbstractElectrical impedance tomography (EIT) is a well-known technique to estimate the conductivity distribution γ of a body Ω with unknown electromagnetic properties. EIT is a severely ill-posed inverse problem. In this paper, we formulate the EIT problem in the Bayesian framework using mixed total variation (TV) and non-convex ℓ


Sensor Review ◽  
2017 ◽  
Vol 37 (3) ◽  
pp. 257-269 ◽  
Author(s):  
Qi Wang ◽  
Pengcheng Zhang ◽  
Jianming Wang ◽  
Qingliang Chen ◽  
Zhijie Lian ◽  
...  

Purpose Electrical impedance tomography (EIT) is a technique for reconstructing the conductivity distribution by injecting currents at the boundary of a subject and measuring the resulting changes in voltage. Image reconstruction for EIT is a nonlinear problem. A generalized inverse operator is usually ill-posed and ill-conditioned. Therefore, the solutions for EIT are not unique and highly sensitive to the measurement noise. Design/methodology/approach This paper develops a novel image reconstruction algorithm for EIT based on patch-based sparse representation. The sparsifying dictionary optimization and image reconstruction are performed alternately. Two patch-based sparsity, namely, square-patch sparsity and column-patch sparsity, are discussed and compared with the global sparsity. Findings Both simulation and experimental results indicate that the patch based sparsity method can improve the quality of image reconstruction and tolerate a relatively high level of noise in the measured voltages. Originality/value EIT image is reconstructed based on patch-based sparse representation. Square-patch sparsity and column-patch sparsity are proposed and compared. Sparse dictionary optimization and image reconstruction are performed alternately. The new method tolerates a relatively high level of noise in measured voltages.


2019 ◽  
Vol 42 (4) ◽  
pp. 680-690
Author(s):  
Tomasz Rymarczyk ◽  
Edward Kozłowski ◽  
Grzegorz Kłosowski

The article presents non-destructive testing based on electrical impedance tomography (EIT) for spatial (3D) monitoring of flood embankments. Therefore, to solve the inverse problem of the EIT, an effective algorithm based on multiple elastic nets has been developed. The originality of the solution is based on the application of many elastic net algorithms as functions, each of which, based on the vector of all measurements, generates the value of a single pixel for the reconstructed image. In this way, the set of elastic nets is equal to the resolution of the image output. Such an approach, although requiring more computing power, yields high resolution images. In addition, the presented algorithms are characterized by high noise immunity and distortion of measurement data. Five different electrode systems were tested in the samples and compared with each other in two measurement variants (stimulations). A reconstruction made on the basis of actual measurements obtained from the physical model was also presented. The presented solution provides a visual analysis of seepages and leaks, which allows for quick and effective intervention and possible prevention of dangers. The research proved that the use of tomographic measurement techniques in combination with the image reconstruction algorithm based on elastic net allows for non-invasive and very accurate spatial assessment of leaks and damages of flood embankments. The received results confirm the effectiveness of the presented research.


2018 ◽  
Vol 30 (3) ◽  
pp. 481-504 ◽  
Author(s):  
HABIB AMMARI ◽  
FAOUZI TRIKI ◽  
CHUN-HSIANG TSOU

The multifrequency electrical impedance tomography consists in retrieving the conductivity distribution of a sample by injecting a finite number of currents with multiple frequencies. In this paper, we consider the case where the conductivity distribution is piecewise constant, takes a constant value outside a single smooth anomaly, and a frequency dependent function inside the anomaly itself. Using an original spectral decomposition of the solution of the forward conductivity problem in terms of Poincaré variational eigenelements, we retrieve the Cauchy data corresponding to the extreme case of a perfect conductor, and the conductivity profile. We then reconstruct the anomaly from the Cauchy data. The numerical experiments are conducted using gradient descent optimization algorithms.


Author(s):  
Mirjeta Pasha ◽  
Shyla Kupis ◽  
Sanwar Ahmad ◽  
Taufiquar Khan

Electrical Impedance Tomography (EIT) is a well-known imaging technique for detecting the electrical properties of an object in order to detect anomalies, such as conductive or resistive targets. More specifically, EIT has many applications in medical imaging for the detection and location of bodily tumors since it is an affordable and non-invasive method, which aims to recover the internal conductivity of a body using voltage measurements resulting from applying low frequency current at electrodes placed at its surface. Mathematically, the reconstruction of the internal conductivity is a severely ill-posed inverse problem and yields a poor quality image reconstruction. To remedy this difficulty, at least in  part, we regularize and solve the nonlinear minimization problem by the aid of a Krylov subspace-type method for the linear sub problem during each iteration.  In EIT, a tumor or general anomaly can be modeled as a piecewise constant perturbation of a smooth background, hence, we solve the regularized problem on a subspace of relatively small dimension by the Flexible Golub-Kahan process that provides solutions that have sparse representation. For comparison, we use a well-known modified Gauss-Newton algorithm as a benchmark. Using simulations, we demonstrate the effectiveness of the proposed method. The obtained reconstructions indicate that the Krylov subspace method is better adapted to solve the ill-posed EIT problem and results in higher resolution images and faster convergence compared to reconstructions using the modified Gauss-Newton algorithm.


2021 ◽  
Vol 7 (2) ◽  
pp. 276-278
Author(s):  
Rongqing Chen ◽  
András Lovas ◽  
Balázs Benyó ◽  
Knut Moeller

Abstract COVID-19 induced acute respiratory distress syndrome (ARDS) could have two different phenotypes, which might have different response and outcome to the traditional ARDS positive end-expiration pressure (PEEP) treatment. The identification of the different phenotypes in terms of the PEEP recruitment can help improve the patients’ outcome. In this contribution we reported a COVID-19 patient with seven-day electrical impedance tomography monitoring. From the conductivity distribution difference image analysis of the data, a clear course developing trend can be observed in addition to the phenotype identification. This case might suggest that EIT can be a practical tool to identify phenotypes and to provide progressive information of COVID-19 pneumonia.


2019 ◽  
Vol 41 (14) ◽  
pp. 4035-4049 ◽  
Author(s):  
Xiuyan Li ◽  
Yong Zhou ◽  
Jianming Wang ◽  
Qi Wang ◽  
Yang Lu ◽  
...  

Image reconstruction for Electrical Impedance Tomography (EIT) is a highly nonlinear and ill-posed inverse problem. It requires the design and employment of feasible reconstruction methods capable to guarantee trustworthy image generation. Deep Neural Networks (DNN) have a powerful ability to express complex nonlinear functions. This research paper introduces a novel framework based on DNN aiming to achieve EIT image reconstruction. The proposed DNN model, comprises of the following two layers, namely: The Stacked Autoencoder (SAE) and the Logistic Regression (LR). It is trained using the large lab samples which are obtained by the COMSOL simulation software (a cross platform finite elements analysis solver). The relationship between the voltage measurement and the internal conductivity distribution is determined. The untrained voltage measurement samples are used as input to the trained DNN, and the output is an estimate for image reconstruction of the internal conductivity distribution. The results show that the proposed model can achieve reliable shape and size reconstruction. When white Gaussian noise with a signal-to-noise ratio of 30, 40 and 50 were added to test set, the proposed DNN structure still has good imaging results, which proved the anti-noise capability of the network. Furthermore, the network that was trained using simulation data sets, would be applied for the EIT image reconstruction based on the experimental data that were produced after preprocessing.


Sign in / Sign up

Export Citation Format

Share Document