scholarly journals Evaluating OADM network simulation and an overview based metropolitan application

2021 ◽  
Vol 31 (1) ◽  
pp. 27-39
Author(s):  
Essa Ibrahim Essa ◽  
Mshari A. Asker ◽  
Fidan T. Sedeeq

Abstract Using optical add–drop multiplexer/remover multiplexer (OADM), it is possible to add or remove wavelengths and change or route them through the various nodes and networks. At this moment, key problems in add–drop multiplexer (ADM) are the bandwidth, modulation format, and reuse wavelength. In this article, the Optisystem software simulation is used as a platform to design, test, and verify the method applied to the current work; the OADM is proposed based on the metro network to get distribution between nodes over a transmission link; OADM analysis was presented with four channels (193.1, 193.2, 193.3, and 193.4 THz) at total bandwidth of 1.6 Tb/s, none-return-to-zero (NRZ), and return to zero coding types. Experiment one shows that the average output power is −17.997 dBm, the average drop power is −17.997 dBm, and the average add power is −18.338 dBm, the average gain is −0.0429 dB, the average noise figure is 0 dB, the average power input signal is 10.679 dBm, the average of power output signal is 10.633 dBm, and the average output optical signal-to-noise ratio (OSNR) is 0 dB, However, the second experiment shows that the average output power is −24.238 dBm, the average drop power is −24.288 dBm, and the average add power is −24.753 dBm, the average gain is −0.0417 dB, the average noise figure is 0 dB, average power input signal is 7.691 dBm, average of power output signal is 7.677 dBm, and the average output OSNR 0 dB. The system supports four input channels, four add channels, four output channels, and four drop channels. The results are acceptable after three spans of Solitons fiber with 600 km length, 200 km for each span. Nonetheless, it is believed that it is well justified to adopt these schemes in the current optical network with a low cost for overall expenditure.

Electronics ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 621
Author(s):  
Tao Cao ◽  
Youjiang Liu ◽  
Wenhua Chen ◽  
Chun Yang ◽  
Jie Zhou

An analytical method to design a power amplifier (PA) with an optimized power added efficiency (PAE) trajectory for envelope tracking (ET) architecture is proposed. To obtain feasible matching solutions for high-efficiency performance of the PA in the dynamic supply operation, hybrid continuous modes (HCM) architecture is introduced. The design space for load impedances of the HCM PAs with nonlinear capacitance is deduced mathematically using the device’s embedding transfer network, without the necessity of using load-pull. The proposed design strategy is verified with the implementation of a GaN PA operating over the frequency range of 1.9 GHz to 2.2 GHz with PAE between 67.8% and 72.4% in the 6.7 dB back-off power region of the ET mode. The ET experimental system was set up to evaluate the application of the PA circuit. Measurement results show that the ET PA at 2.1 GHz reaches the efficiency of 61%, 54%, 44% and an error vector magnitude (EVM) of 0.32%, 0.60%, 0.67% at an average output power of 34.4 dBm, 34.2 dBm, 34.1 dBm for 6.7 dB peak-to-average power ratios (PAPR) signals with 5 MHz, 10 MHz, and 20 MHz bandwidths, respectively. Additionally, tested by a 20 MHz bandwidth 16 quadrature amplitude modulation (QAM) signal, 41.8% to 49.2% efficiency of ET PA is achieved at an average output power of 33.5 dBm to 35.1 dBm from 1.9 GHz to 2.2 GHz.


1987 ◽  
Vol 65 (11) ◽  
pp. 2690-2695 ◽  
Author(s):  
R. J. Larson

The rhizostome scyphomedusa Stomolophus meleagris swims continuously at speeds up to 15 cm∙s−1. Mean velocities increased as a power function of wet weight up to 70 g but were mostly constant thereafter. Bell pulsations ranged from 1.7 to 3.6 Hz. Reynolds numbers equalled 900 – 13 000. During activity, medusae consumed 0.05 mL O2∙h−1∙g WW−1 (1.2 mL O2∙h−1∙g DW−1), at 30 °C. Rates for inactive medusae were 50% less. The estimated cost of transport ranged from 2 J∙kg−1∙m−1 at 5 g to 1 J∙kg−1∙m−1 at 1 kg. These rates are comparable to those of fishes and about 1/50th that of planktonic crustaceans. These results were unexpected in light of the typical inefficiency (power output/power input) of jet swimming. However, S. meleagris has a very low respiration rate relative to crustaceans and fish, which probably compensated for low swimming efficiency.


1995 ◽  
Author(s):  
Nikola V. Sabotinov ◽  
Chris E. Little

2002 ◽  
Vol 27 (16) ◽  
pp. 1478 ◽  
Author(s):  
A. Major ◽  
N. Langford ◽  
T. Graf ◽  
D. Burns ◽  
A. I. Ferguson

2014 ◽  
Author(s):  
Valentin Gapontsev ◽  
Alexey Avdokhin ◽  
Pankaj Kadwani ◽  
Igor Samartsev ◽  
Nikolai Platonov ◽  
...  

2009 ◽  
Vol 6 (6) ◽  
pp. 461-464 ◽  
Author(s):  
Y.X. Wang ◽  
D.Z. Yang ◽  
P.P. Jiang ◽  
Y.H. Shen

2014 ◽  
Vol 22 (20) ◽  
pp. 24384 ◽  
Author(s):  
Kun Liu ◽  
Jiang Liu ◽  
Hongxing Shi ◽  
Fangzhou Tan ◽  
Pu Wang

Sign in / Sign up

Export Citation Format

Share Document