Ball milling for the formation of nanocrystalline intermetallic compounds from Ni-Ti elemental powders

2018 ◽  
Vol 27 (5-6) ◽  
Author(s):  
Pardeep Sharma

AbstractIn the present research work nickel (Ni) and titanium (Ti) elemental powder with an ostensible composition of 50% of each by weight were mechanically alloyed in a planetary high energy ball mill in diverse milling circumstances (10, 20, 30 and 60 h). The inspection exposed that increasing milling time leads to a reduction in crystallite size, and after 60 h of milling, the Ti dissolved in the Ni lattice and the NiTi (B2) phase was obtained. The lattice strain of ball milled mixtures augmented from 0.15 to 0.45 at 60 h milling. With increase in milling time the morphology of pre-alloyed powder changed from lamella to globular. Annealing of as-milled powders at 1100 K for 800 s led to the formation of NiTi (B19′), grain growth and the release of internal strain. The result indicated that this technique is a powerful and highly productive process for preparing NiTi intermetallic compounds with a nano-crystalline structure and appropriate morphology.

2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Hadi Jahangiri ◽  
Sultan Sönmez ◽  
M. Lütfi Öveçoğlu

The effects of milling atmosphere and mechanical alloying (MA) duration on the effective lattice parameter, crystallite size, lattice strain, and amorphization rate of the W-0.5 wt.% Ti powders were investigated. W-0.5 wt.% Ti powders were mechanically alloyed (MA’d) for 10 h and 20 h in a high energy ball mill. Moreover, morphology of the powders for various MA was analyzed using SEM microscopy. Their powder density was also measured by helium pycnometer. The dry milled agglomerated powders have spherical particle, while wet milled powders have layered morphology. Milling media and increasing of milling time significantly reduce the crystallite size. The smallest crystallite size is 4.93 nm which belonged to the dry milled powders measured by Lorentzian method after 20 hours’ MA. However, after 20 hours, MA’d powders show the biggest crystallite size, as big as 57.07 nm, measured with the same method in ethanol.


2017 ◽  
Vol 32 (S1) ◽  
pp. S186-S192 ◽  
Author(s):  
G. Dercz ◽  
I. Matuła ◽  
M. Zubko ◽  
J. Dercz

The study presents the results of the influence of high-energy ball-milling time on the structure of the new β-type Ti–Ta–Nb–Zr alloys for biomedical applications. Initial elemental powders were mechanically alloyed in a planetary high-energy ball mill at different milling times (from 10 to 90 h). Observation of the powder morphology after various stages of milling leads to the conclusion that with the increase of the milling time the size of the powder particles as well as the degree of aggregation change. Clear tendency of crystalline size reduction at every stage of the grinding process is clearly observed. The X-ray diffraction results confirmed the formation of β phase during high-energy ball milling of the precursor mixture of Ti, Ta, Nb, and Zr. The Rietveld refinement method has shown that both the production method and the atomic radii of the elements used in the mechanical synthesis have influence on the structure. Furthermore, it was found that a broadening of the diffraction peaks with increase of the milling time results from an increase in the crystallites dispersion and an enlargement in the lattice distortion. The results indicate that this technique is a powerful and high productive process for preparing new β-titanium alloys with nanocrystalline structure and appropriate morphology.


2017 ◽  
Vol 47 ◽  
pp. 79-88 ◽  
Author(s):  
Z. Hamlati ◽  
W. Laslouni ◽  
Mohammed Azzaz ◽  
M. Zergoug ◽  
D. Martínez-Blanco ◽  
...  

Ternary Fe72Al26Sn2 and Cu70Fe18Co12 alloys were obtained by mechanical alloying of pure Fe, Al, Sn, Cu and Co powders using a high energy ball mill. X-ray diffraction and electron microscopy supported by magnetic measurements have been applied to follow changes in the microstructure, phase composition and magnetic properties in dependence on milling time. With the increase of milling time all Al and Sn atoms dissolved in the bcc Fe and the final product of the MA process was the nanocrystalline Fe (Al, Sn) solid solution in a metastable state with a large amount of defects and mean crystallite size of 5 nm. However, the obtained crystallite size value is about 10 nm for the ball milled Cu70Fe18Co12 powders. The electron microscope observations show the morphology of powder particles. Magnetic properties of the nanocrystalline mechanically alloyed FeAlSn and CuFeCo were also investigated and were related to the microstructural changes.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1225
Author(s):  
Cristina García-Garrido ◽  
Ranier Sepúlveda Sepúlveda Ferrer ◽  
Christopher Salvo ◽  
Lucía García-Domínguez ◽  
Luis Pérez-Pozo ◽  
...  

In this work, a blend of Ti, Nb, and Mn powders, with a nominal composition of 15 wt.% of Mn, and balanced Ti and Nb wt.%, was selected to be mechanically alloyed by the following two alternative high-energy milling devices: a vibratory 8000D mixer/mill® and a PM400 Retsch® planetary ball mill. Two ball-to-powder ratio (BPR) conditions (10:1 and 20:1) were applied, to study the evolution of the synthesized phases under each of the two mechanical alloying conditions. The main findings observed include the following: (1) the sequence conversion evolved from raw elements to a transitory bcc-TiNbMn alloy, and subsequently to an fcc-TiNb15Mn alloy, independent of the milling conditions; (2) the total full conversion to the fcc-TiNb15Mn alloy was only reached by the planetary mill at a minimum of 12 h of milling time, for either of the BPR employed; (3) the planetary mill produced a non-negligible Fe contamination from the milling media, when the highest BPR and milling time were applied; and (4) the final fcc-TiNb15Mn alloy synthesized presents a nanocrystalline nature and a partial degree of amorphization.


2012 ◽  
Vol 05 ◽  
pp. 496-501 ◽  
Author(s):  
S. SHEIBANI ◽  
S. HESHMATI-MANESH ◽  
A. ATAIE

In this paper, the influence of toluene as the process control agent (PCA) and pre-milling on the extension of solid solubility of 7 wt.% Cr in Cu by mechanical alloying in a high energy ball mill was investigated. The structural evolution and microstructure were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques, respectively. The solid solution formation at different conditions was analyzed by copper lattice parameter change during the milling process. It was found that both the presence of PCA and pre-milling of Cr powder lead to faster dissolution of Cr . The mean crystallite size was also calculated and showed to be about 10 nm after 80 hours of milling.


2019 ◽  
Vol 969 ◽  
pp. 68-72
Author(s):  
K. Chandra Sekhar ◽  
Balasubramanian Ravisankar ◽  
S. Kumaran

An attempt was made to synthesis Al-5083alloy through high energy ball milling and densification through ECAP. The elemental powders consisting of Al5083 was milled for 5, 10 and 15 hrs using Retsch high energy ball mill (PM400). The physical and structural properties of mechanically alloyed particulates were characterised by diffraction methods and electron microscopy. The 15hrs nanocrystalline structured particulates of Al5083 alloy shows crystallite size of 15nm. Scanning Electron Microscope (SEM) reveals the morphology of alloy which is irregular shaped. The size of alloyed particulates also measured using SEM and found to be 7μm for 15hrs of milling. The 15hr milled alloy particulates were densified by ECAP through 90o die channel angle. Maximum densification of 92% and highest hardness of 63HRB was achieved for sample consolidated with route-A for two passes along with sintering.


1993 ◽  
Vol 8 (2) ◽  
pp. 307-313 ◽  
Author(s):  
K. Aoki ◽  
A. Memezawa ◽  
T. Masumoto

An intermetallic compound c–NiZr and a mixture of elemental powders of nickel and zirconium [Ni50Zr50 (at. %)] have been mechanically ground (MG) and mechanically alloyed (MA), respectively, using a high-energy ball mill in various atmospheres. The products were characterized by x-ray diffraction, transmission electron microscopy, differential scanning calorimetry, and chemical analysis as a function of milling time. An amorphous a–NiZr alloy was prepared by both MG and MA in an argon atmosphere. By MG of NiZr, an amorphous nitride a–NiZrN0.15 was synthesized in a nitrogen atmosphere, while a crystalline hydride c–NiZrH3 was formed in a hydrogen atmosphere. On the other hand, ZrN and ZrH2 were formed by MA in a nitrogen and a hydrogen atmosphere, respectively. The amorphization reaction was observed between ZrH2 and Ni by further MA in a hydrogen atmosphere, and a mixture of a–NiZrxHy (x < 1) and ZrH2 was obtained. However, no amorphization was observed by MA between ZrN and Ni in a nitrogen atmosphere. The effects of the milling atmosphere on the phase formations during MG and MA are discussed based on the gas absorption rate.


2018 ◽  
Vol 2 (3) ◽  
pp. 50 ◽  
Author(s):  
David Florián-Algarín ◽  
Angelisse Ramos-Morales ◽  
Michelle Marrero-García ◽  
Oscar Suárez

This research focuses on the fabrication of aluminum wires treated with MoB2 nanoparticles and their effect on selected mechanical and thermal properties of the wires. These nanoparticles were obtained by fragmentation in a high-energy ball mill and then mechanically alloyed with pure aluminum powder to form Al/MoB2 pellets. The pellets were added to molten pure aluminum (99.5%) at 760 °C. Afterwards, the treated melt was cast into cylindrical ingots, which were cold-formed to the desired final diameter with intermediate annealing. X-ray diffraction and optical microscopy allowed characterizing the structure and microstructure of the material. The wires underwent tensile and bending tests, as well as electrical measurements. Finally, this research demonstrated how the mechanical properties of aluminum wires can be enhanced with the addition of MoB2 nanoparticles with minimal effects on the material resistivity.


2015 ◽  
Vol 24 (5-6) ◽  
pp. 207-212 ◽  
Author(s):  
David Florián-Algarín ◽  
Raúl Marrero ◽  
Alexandra Padilla ◽  
Oscar Marcelo Suárez

AbstractThis study hinges on the feasibility of strengthening Al and Al-Mg wires by adding Al nanocomposite pellets containing MgB2 nanoparticles into the melt upon fabrication. These MgB2 nanoparticles were obtained by fragmentation using a high-energy ball mill, and were, afterward, mechanically alloyed with pure aluminum. The resulting MgB2/Al nanocomposite pellets were sintered at 260°C to be subsequently added into molten aluminum and an Al-Mg alloy melt. Cold rolling intercalated with stepwise annealing allowed the fabrication of 1 mm diameter wires with a final area reduction of 96%. Mechanical and physical properties of the treated wire specimens were compared to those of similarly processed pure aluminum wire. The ultimate tensile strength of the treated wires increased approximately double fold with respect to untreated wires at the expense of some loss in electrical conductivity.


2018 ◽  
Vol 54 ◽  
pp. 136-145
Author(s):  
A. El Mohri ◽  
M. Zergoug ◽  
K. Taibi ◽  
M. Azzaz

Nanocrystalline Fe90Mg10 alloy samples were prepared by mechanical alloying process using planetary high energy ball mill. The prepared powders were characterized using differential thermal analysis (DTA), X-ray diffraction technique (XRD) at high temperature, transmission electron microscopy (TEM), and the vibrating sample magnetometer (VSM). Obtained results are discussed according to milling time. XRD at high temperature results also indicated that when the milling time increases, the lattice parameter and the mean level of grain size increase, whereas the microstrains decrease. The result of the observation by the TEM of the Fe-Mg powders prepared in different milling time, coercive fields derived and Saturation magnetization derived from the hysteresis curves in high temperature are discussed as a function of milling time.


Sign in / Sign up

Export Citation Format

Share Document