Experimental Investigation of Multiple Quality Characteristics of Laser Beam Machined Surface using Integrated Taguchi and Fuzzy Logic Method

2016 ◽  
Vol 16 (3) ◽  
pp. 189-199 ◽  
Author(s):  
Anish Kumar ◽  
Vinod Kumar ◽  
Gaurav Sharma

AbstractIn laser cutting, the capability of laser cutting mainly depends on optical and thermal properties of work material. The surface quality and metallurgical properties of the product is most important from the point of laser cutting quality. The present research work explores the modeling and optimization of laser beam cutting process parameters by using hybrid approach of Taguchi based fuzzy logic. The multi-response optimization of process parameters has been done to improve geometrical accuracy by minimizing the kerf width and kerf deviation. The four input parameters power, gas pressure, feed rate, pulse frequency and three output parameters kerf width (KW), kerf deviation (KD) and material removal rate (MRR) have been taken for the experimentation work. The S/N ratios taken for the KW and KD is of the smaller-the-better type and MRR is of the higher the better type. The predicting fuzzy logic model is implemented on Fuzzy Logic Toolbox of MATLAB using Mamdani technique. The fuzzy logic theory has been applied to compute the fuzzy multi-response performance index (FMRPI). This performance index is further used for multi-objective optimization. The selected samples were analyzed using scanning electron microscope. The predicted optimum results have been validated by performing the confirmation tests. The confirmation tests showed the considerable reduction in kerf deviation and increase in material removal rate.

Author(s):  
Nehal Dash ◽  
Apurba Kumar Roy ◽  
Sanghamitra Debta ◽  
Kaushik Kumar

Plasma Arc Cutting (PAC) process is a widely used machining process in several fabrication, construction and repair work applications. Considering gas pressure, arc current and torch height as the inputs and among all possible outputs, in the present work Material Removal Rate and Surface Roughness would be considered as factors that determines the quality, machining time and machining cost. In order to reduce the number of experiments Design of Experiments (DOE) would be carried out. In later stages applications of Genetic Algorithm (GA) and Fuzzy Logic would be used for Optimization of process parameters in Plasma Arc Cutting (PAC). The output obtained would be minimized and maximized for Surface Roughness and Material Removal Rate respectively using Genetic Algorithm (GA) and Fuzzy Logic.


Micromachines ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 371 ◽  
Author(s):  
Muneer Mohammed ◽  
Usama Umer ◽  
Ateekh Rehman ◽  
Abdulrahman Al-Ahmari ◽  
Abdulaziz El-Tamimi

Ceramic microchannels have important applications in different microscale systems like microreactors, microfluidic devices and microchemical systems. However, ceramics are considered difficult to manufacture owing to their wear and heat resistance capabilities. In this study, microchannels are developed in alumina ceramic using direct Nd:YAG laser writing. The laser beam with a characteristic pulse width of 10 µs and a beam spot diameter of 30 µm is used to make 200 µm width microchannels with different depths. The effects of laser beam intensity and pulse overlaps on dimensional accuracy and material removal rate have been investigated using different scanning patterns. It is found that beam intensity has a major influence on dimensional accuracy and material removal rate. Optimum parameter settings are found using grey relational grade analysis. It is concluded that low intensity and low to medium pulse overlap should be used for better dimensional accuracy. This study facilitates further understanding of laser material interaction for different process parameters and presents optimum laser process parameters for the fabrication of microchannel in alumina ceramic.


Manufacturing ◽  
2003 ◽  
Author(s):  
Scott F. Miller ◽  
Albert J. Shih

The development of new, advanced engineering materials and the needs for precise and flexible prototype and low-volume production have made wire electrical discharge machining (EDM) an important manufacturing process to meet such demand. This research investigates the effect of spark on-time duration and spark on-time ratio, two important EDM process parameters, on the material removal rate (MRR) and surface integrity of four types of advanced material: porous metal foams, metal bond diamond grinding wheels, sintered Nd-Fe-B magnets, and carbon-carbon bipolar plates. An experimental procedure was developed. During the wire EDM, five types of constraints on the MRR due to short circuit, wire breakage, machine slide speed limit, and spark on-time upper and lower limits have been identified. An envelope of feasible EDM process parameters is created and compared across different work-materials. Applications of such process envelope to select process parameters for maximum MRR and for machining of micro features are presented.


Author(s):  
Hariharan Perianna Pillai ◽  
Shamli Chinnakulanthai Sampath ◽  
Rajkeerthi Elumalai ◽  
Shruthilaya Hariharan ◽  
Yuvaraj Natarajan

Electrochemical micromachining process is one among the successful micromachining technique, which uses the electrochemical energy and is recognized for machining difficult-to-cut materials. One such material is Nimonic 75 alloy, which is used to make gas turbine components. In this study, an effort has been made to machine micro-hole profiles in Nimonic 75 with a thickness of 500 μm using two different electrolytes. A combination of sodium bromide, hydrofluoric acid and ethylene glycol has been chosen as the first electrolyte, while the second is a combination of sodium chloride and sodium nitrate. Solid tungsten carbide of diameter 500 μm is used as the tool in each case. For layout of experiments, Taguchi orthogonal array was chosen with following input parameters namely voltage, micro-tool feed rate and duty cycle. Performance characteristics such as material removal rate, overcut and conicity have been assessed for each electrolyte. Experimental results have shown that the first electrolyte yields lower values of overcut (OC) and conicity, whereas the second electrolyte gives higher material removal rate (MRR). Further, the optimal combinations of process parameters have been found by implementing the TOPSIS procedure and the results were found to be in good agreement with the experimental outcomes.


2020 ◽  
Vol 17 (3) ◽  
pp. 389-397
Author(s):  
Harvinder Singh ◽  
Vinod Kumar ◽  
Jatinder Kapoor

Purpose This study aims to investigate the influence of process parameters of wire electrical discharge machining (WEDM) of Nimonic75. Nimonic75 is a Nickel-based alloy mostly used in the aerospace industry for its strength at high temperature. Design/methodology/approach One factor at a time (OFAT) approach has been used to perform the experiments. Pulse on time, pulse off time, peak current and servo voltage were chosen as input process parameters. Cutting speed, material removal rate and surface roughness (Ra) were selected as output performance characteristics. Findings Through experimental work, the effect of process parameters on the response characteristics has been found. Results identified the most important parameters to maximize the cutting speed and material removal rate and minimize Ra. Originality/value Very limited research work has been done on WEDM of Nickel-based alloy Nimonic75. Therefore, the aim of this paper to conduct preliminary experimentation for identifying the parameters, which influence the response characteristics such as material removal rate, cutting speed, Ra, etc. during WEDM of Nickel-based alloy (Nimonic75) using OFAT approach and found the machinability of Nimonic75 for further exhaustive experimentation work.


Sign in / Sign up

Export Citation Format

Share Document