Arrayed Waveguide Grating and Re-Circulating Buffer Based Optical Packet Switch

2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Manahar Prashant Shukla ◽  
Rajiv Srivastava

AbstractOptical packet switching has gained popularity in past decade. However, due to technical challenges all- optical switching is not implemented till date, still hybrid switching where both optical and electrical switching are used simultaneously by-passing the limitations of both the technologies. In fiber delay lines (FDLs) buffering is limited due to accumulated losses and noises, and most of the times short term storage is enough in optical switching, but in case of long term storage, re-circulating type buffer can be used, but again due to accumulation of degrading terms re-circulation count is limited therefore in case of longer duration storage, electronic buffer is better choice. In this paper, we have proposed a hybrid buffer based optical switch where both optical and electronic buffers are used for storage of contending packets, and optical buffer is re-circulating in nature. The performance of the switch is measured in terms of bit error rate (BER) and packet loss probability, and BER performance is compared with recently proposed design, and it has been found that the proposed switch is comparatively much superior to earlier one.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Preeti Singh ◽  
J. K. Rai ◽  
Ajay K. Sharma

Abstract Optical packet switching (OPS) exhibits the ability to be utilized as a data transmission technique for next-generation. The core router/switch plays a significant role in packet routing and buffering in OPS. Arrayed waveguide grating (AWG) is realized as a promising core element for fast optical switching, with its intrinsic capacity to achieve wavelength routing of different wavelengths in parallel. This paper proposes an AWG-based add-drop optical packet switch, including a hybrid buffer, to resolve contention among packets. In a hybrid buffer, both optical and electronic buffers are used for the buffering of contending packets. AWGs are affected by crosstalk that can significantly impair system operation. The physical layer analysis is discussed in the presence of crosstalk, and the performance of the switch is evaluated in terms of bit error rate. The desired minimum input power is calculated for the switch’s correct operation for both optical buffer and electronic buffer. Finally, the packet loss probability (PLP) of the hybrid buffer is examined under various buffering conditions. Results reveal that with the increase in the optical power of the input signal, crosstalk power increases linearly for optical and electronic buffers. The increased crosstalk power is higher for electronic buffers than the optical buffer. The use of electronic memory in the hybrid buffer allows the hybrid buffer to increase its buffer size thus, reducing the PLP.


2001 ◽  
Vol 6 (2) ◽  
pp. 3-14 ◽  
Author(s):  
R. Baronas ◽  
F. Ivanauskas ◽  
I. Juodeikienė ◽  
A. Kajalavičius

A model of moisture movement in wood is presented in this paper in a two-dimensional-in-space formulation. The finite-difference technique has been used in order to obtain the solution of the problem. The model was applied to predict the moisture content in sawn boards from pine during long term storage under outdoor climatic conditions. The satisfactory agreement between the numerical solution and experimental data was obtained.


Diabetes ◽  
1997 ◽  
Vol 46 (3) ◽  
pp. 519-523 ◽  
Author(s):  
G. M. Beattie ◽  
J. H. Crowe ◽  
A. D. Lopez ◽  
V. Cirulli ◽  
C. Ricordi ◽  
...  

2020 ◽  
Vol 59 (SL) ◽  
pp. SLLC01 ◽  
Author(s):  
Tomoki Murota ◽  
Toshiki Mimura ◽  
Ploybussara Gomasang ◽  
Shinji Yokogawa ◽  
Kazuyoshi Ueno

Author(s):  
O. Semenenko ◽  
O. Vodchyts ◽  
V. Koverga ◽  
R. Lukash ◽  
O. Lutsenko

The introduction and active use of information transmission and storage systems in the Ministry of Defense (MoD) of Ukraine form the need to develop ways of guaranteed removal of data from media after their use or long-term storage. Such a task is an essential component of the functioning of any information security system. The article analyzes the problems of guaranteed destruction of information on magnetic media. An overview of approaches to the guaranteed destruction of information on magnetic media of different types is presented, and partial estimates of the effectiveness of their application are given by some generally accepted indicators of performance evaluation. The article also describes the classification of methods of destruction of information depending on the influence on its medium. The results of the analysis revealed the main problems of application of software methods and methods of demagnetization of the information carrier. The issue of guaranteed destruction of information from modern SSD devices, which are actively used in the formation of new systems of information accumulation and processing, became particularly relevant in the article. In today's conditions of development of the Armed Forces of Ukraine, methods of mechanical and thermal destruction are more commonly used today. In the medium term, the vector of the use of information elimination methods will change towards the methods of physical impact by the pulsed magnetic field and the software methods that allow to store the information storage device, but this today requires specialists to develop new ways of protecting information in order to avoid its leakage.


Sign in / Sign up

Export Citation Format

Share Document