Photonic Crystal-Based All-Optical Half Adder with High Contrast Ratio

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Priyanka Pathak ◽  
Rukhsar Zafar ◽  
Vinay Kanungo ◽  
Sandeep Vyas

AbstractPhotonic crystal waveguides provide a way to manipulate the performance of an optical signal in an ultra-small volume and are quite viable in designing chip-based components that will work all-optically. Here, in this article an all-optical half adder is proposed. It is based on a square lattice photonic crystal waveguide in which silicon rods are arranged periodically. The photonic crystal offers a wide photonic band-gap in the desired region of telecommunication wavelength (i. e. near λ = 1550 nm. The performance of half Adder is measured using the contrast ratio and response time. The contrast ratio for sum and carry is 5.2 dB and 16.7 dB, respectively. The proposed half adder is miniaturized in size and having a footprint of 49 µm2 only. The total response time of the proposed adder is 1.4 picoseconds only. So, the device offers a high bit rate of 0.714 Tb/sec. The proposed half adder is an optimum choice for its application in on-chip optical integrated circuits.

Crystals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 461 ◽  
Author(s):  
Mohammad Reza Jalali Azizpour ◽  
Mohammad Soroosh ◽  
Narges Dalvand ◽  
Yousef Seifi-Kavian

In this paper, an all-optical photonic crystal-based switch containing a graphene resonant ring has been presented. The structure has been composed of 15 × 15 silicon rods for a fundamental lattice. Then, a resonant ring including 9 thick silicon rods and 24 graphene-SiO2 rods was placed between two waveguides. The thick rods with a radius of 0.41a in the form of a 3 × 3 lattice were placed at the center of the ring. Graphene-SiO2 rods with a radius of 0.2a were assumed around the thick rods. These rods were made of the graphene monolayers which were separated by SiO2 disks. The size of the structure was about 70 µm2 that was more compact than other works. Furthermore, the rise and fall times were obtained by 0.3 ps and 0.4 ps, respectively, which were less than other reports. Besides, the amount of the contrast ratio (the difference between the margin values for logics 1 and 0) for the proposed structure was calculated by about 82%. The correct switching operation, compactness, and ultra-fast response, as well as the high contrast ratio, make the presented switch for optical integrated circuits.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hamed Azhdari ◽  
Sahel Javahernia

Abstract Increasing the speed of operation in all optical signal processing is very important. For reaching this goal one needs high speed optical devices. Optical half adders are one of the important building blocks required in optical processing. In this paper an optical half adder was proposed by combining nonlinear photonic crystal ring resonators with optical waveguides. Finite difference time domain method wase used for simulating the final structure. The simulation results confirmed that the rise time for the proposed structure is about 1 ps.


2019 ◽  
Vol 40 (3) ◽  
pp. 195-203 ◽  
Author(s):  
Sandip Swarnakar ◽  
Santosh Kumar ◽  
Sandeep Sharma

Abstract A design of all-optical half-subtractor (AOHS) is presented based on two-dimensional (2-D) photonic crystal (PhC) waveguides without using optical amplifiers and nonlinear materials. It is an essential component of various photonic integrated circuits. The design of AOHS circuit is based on beam interference principle, using square lattice of Y-shaped and T-shaped waveguides with silicon dielectric rods in air substrate. It is validated through finite-difference time-domain and using MATLAB simulations.


2020 ◽  
Vol 18 (2) ◽  
pp. 89-94 ◽  
Author(s):  
Elhachemi Kouddad ◽  
Rafah Naoum

In this paper, the use of the Kerr effect in a two-dimensional square lattice of In0.82Ga0.18As0.40P0.60 rods in photonic crystal proposes an ultra-compact all-optical NOT logic gate. The main device operation is based on the concept of all the optical switches. In our work, the novelty lies in the design of a new simple nonlinear ring based on the combination of silicon nano-crystal "Si–Nc/In0.82Ga0.18As0.40P0.60" materials that can be used. The contrast ratio and delay time for the proposed NOT logic gate are respectively 25.52 dB and 0.66 ps. The structure size is equal to 168 μm2. Designed logic gates are characterized by low energy consumption, high-speed response, compactness and easy integration. All simulations are based on Non-Linear-Finite Difference Time Domain (NL-FDTD) and Plane Wave Expansion (PWE) numerical methods.


2017 ◽  
Vol 39 (1) ◽  
Author(s):  
Sandip Swarnakar ◽  
Santosh Kumar ◽  
Sandeep Sharma

AbstractNow a day’s photonic crystals (PhCs) are in trends for designing of various integrated circuits like combinational and sequential circuits. The designing of all-optical half adder circuit based on beam interference principle, using T-shaped square lattice with silica dielectric rods in air background, is proposed. This design is a combination of two structures: one part of it works as AND gate and other part works as XOR gate. This structure is simulated using finite difference time domain (FDTD) method and verified numerically using PWE band solver and also using MATLAB.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Afsaneh Heydari ◽  
Ali Bahrami ◽  
Abbas Mahmoodi

AbstractWe propose a very compact structure for all-optical XOR, XNOR, NAND and OR logic gates based on photonic crystal 3-dB coupler in binary-phase-shift-keyed (BPSK) signals. The square lattice of dielectric rods in SiO2 background has been considered for photonic crystal structure. The photonic band gap (PBG) and light propagation simulations of proposed logic structure have been accomplished by plane wave expansion and finite difference time domain methods. The proposed structure can achieve logical function when the refractive index of all rods and substrate is fabricated with relaxed error tolerance within −0.005 to 0.005 from designed parameters. The proposed logic functions may potentially be used as key components in all-optical information networks for processing the BPSK signals.


Photonics ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 392
Author(s):  
Ahmad Mohebzadeh-Bahabady ◽  
Saeed Olyaee

A compact and simple structure is designed to create an all-optical XOR logic gate using a two-dimensional, photonic crystal lattice. The structure was implemented using three waveguides connected by two nano-resonators. The plane wave expansion method was used to obtain the photonic band gap and the finite-difference time-domain method was used to investigate the behavior of the electromagnetic field in the photonic crystal structure. Examining the high contrast ratio and high-speed cascade, all-optical XOR on a chip, the effects of fabrication error and the changes in the input optical power showed that the structure could be used in optical integrated circuits. The contrast ratio and data transfer rate of the cascade XOR logic gate were respectively obtained as 44.29 dB and 1.5 Tb/s. In addition, the designed structure had very small dimensions at 158.65 μm2 and required very low power to operate, which made it suitable for low-power circuits. This structure could also be used as a NOT logic gate. Therefore, an XNOR logic gate can be designed using XOR and NOT logic gates.


Photonics ◽  
2019 ◽  
Vol 6 (1) ◽  
pp. 30 ◽  
Author(s):  
Saif Abdulnabi ◽  
Mohammed Abbas

In this paper, we propose, analyze and simulate a new configuration to simulate all-optical combinational logic functions based on Nano-rings insulator-metal-insulator (IMI) plasmonic waveguides. We used Finite Element Method (FEM) to analyze the proposed plasmonic combinational logic functions. The analyzed combinational logic functions are Half-Adder, Full-Adder, Half-Subtractor, and Comparator One-Bit. The operation principle of these combinational logic functions is based on the constructive and destructive interferences between the input signal(s) and control signal. Numerical simulations show that a transmission threshold exists (0.25) which allows all proposed four plasmonic combinational logic functions to be achieved in one structure. As a result, the transmission threshold value measures the performance of the proposed plasmonic combinational logic functions. We use the same structure with the same dimensions at 1550 nm wavelength for all proposed plasmonic combinational logic functions. The proposed all-optical combinational logic functions structure contributes significantly to photonic integrated circuits construction and all-optical signal processing nano-circuits.


2021 ◽  
Author(s):  
Reza Beiranvand ◽  
Ali Mir ◽  
Reza Talebzadeh

Abstract In this paper, by using the non-linear effects and also destructive and constructive interferences between waveguides, we have designed and simulated an all-optical full-Subtractor based on two-dimensional photonic crystals. The proposed Subtractor has a very simple structure which is composed of 33×31 silicon rods immersed in air in a square lattice and involves three input ports (bits) and an additional waveguide to exhaust the unwanted light. We imposed some defect rods to control the behavior of the light. The used non-linear material, is a doped glass with 1.4×10− 14 m2/w non-linear refractive index which is very greater than the non-linearity refractive index of silicon, 3.46×10− 20 m2/w. Since the proposed structure is very simple and compact, it can be applicable in optical integrated circuits and optical calculations.


Sign in / Sign up

Export Citation Format

Share Document