Towards cloud transport using IP-multiservices access network (MSAN)

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Amina Elbatoul Dinar ◽  
Samir Ghouali ◽  
Rachid Merzougui ◽  
Attaouia Bentahar ◽  
Boualem Merabet

AbstractOptical foundation suppliers and system administrators with another design are used to improve their conventional business activities toward a genuine start to finish cloud item contributions. Optical system suppliers will assemble a consistent foundation and rent it to arrange administrators; the last will work financial-savvy, dynamic and mission-explicit systems utilizing coordinated observation and the board methods. In light of this vision, our article will indicate and execute an IP-MSAN optical system engineering (installation + configuration) capable of supporting the provision of optical network and Unix/Linux platform server-based system resources and thus designing a true cloud infrastructure with heterogeneous/homogeneous servers. We will present the configuration script for a site with 750 subscribers in the Constantine city, Algeria.

Author(s):  
Nitin Chouhan ◽  
Uma Rathore Bhatt ◽  
Raksha Upadhyay

: Fiber Wireless Access Network is the blend of passive optical network and wireless access network. This network provides higher capacity, better flexibility, more stability and improved reliability to the users at lower cost. Network component (such as Optical Network Unit (ONU)) placement is one of the major research issues which affects the network design, performance and cost. Considering all these concerns, we implement customized Whale Optimization Algorithm (WOA) for ONU placement. Initially whale optimization algorithm is applied to get optimized position of ONUs, which is followed by reduction of number of ONUs in the network. Reduction of ONUs is done such that with fewer number of ONUs all routers present in the network can communicate. In order to ensure the performance of the network we compute the network parameters such as Packet Delivery Ratio (PDR), Total Time for Delivering the Packets in the Network (TTDPN) and percentage reduction in power consumption for the proposed algorithm. The performance of the proposed work is compared with existing algorithms (deterministic and centrally placed ONUs with predefined hops) and has been analyzed through extensive simulation. The result shows that the proposed algorithm is superior to the other algorithms in terms of minimum required ONUs and reduced power consumption in the network with almost same packet delivery ratio and total time for delivering the packets in the network. Therefore, present work is suitable for developing cost-effective FiWi network with maintained network performance.


2021 ◽  
Author(s):  
Bi-Xiao Wang ◽  
Shi-biao Tang ◽  
Ying-Qiu Mao ◽  
Wenhua Xu ◽  
Ming Cheng ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
N. A. M. Radzi ◽  
N. M. Din ◽  
M. H. Al-Mansoori ◽  
H. Zainol Abidin

The advantages of Ethernet passive optical network (EPON) are setting it to be a natural ubiquitous solution for the access network. In the upstream direction of EPON, the directional property of the splitter requires that the traffic flow be mitigated to avoid collision. A dynamic bandwidth allocation (DBA) scheme is desirable in optimizing the bandwidth usage further. In this paper, a global priority DBA mechanism is discussed. The mechanism aims to reduce the overall delay while enhancing the throughput and fairness. This study was conducted using MATLAB where it was compared to two other algorithms in the literature. The results show that the delay is reduced up to 59% and the throughput and fairness index are improved up to 10% and 6%, respectively.


Author(s):  
Calvin C.K. Chan

Wavelength division multiplexed passive optical network has emerged as a promising solution to support a robust and large-scale next generation optical access network. It offers high-capacity data delivery and flexible bandwidth provisioning to all subscribers, so as to meet the ever-increasing bandwidth requirements as well as the quality of service requirements of the next generation broadband access networks. The maturity and reduced cost of the WDM components available in the market are also among the major driving forces to enhance the feasibility and practicality of commercial deployment. In this chapter, the author will provide a comprehensive discussion on the basic principles and network architectures for WDM-PONs, as well as their various enabling technologies. Different feasible approaches to support the two-way transmission will be discussed. It is believed that WDM-PON is an attractive solution to realize fiber-to-the-home (FTTH) applications.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Meet Kumari ◽  
Reecha Sharma ◽  
Anu Sheetal

AbstractNowadays, bandwidth demand is enormously increasing, that causes the existing passive optical network (PON) to become the future optical access network. In this paper, next generation passive optical network 2 (NG-PON2) based, optical time division multiplexing passive optical network (OTDM-PON), wavelength division multiplexing passive optical network (WDM-PON) and time & wavelength division multiplexing passive optical network (TWDM-PON) systems with 20 Gbps (8 × 2.5 Gbps) downstream and 20 Gbps (8 × 2.5 Gbps) upstream capacity for eight optical network units has been proposed. The performance has been compared by varying the input power (−6 to 27 dBm) and transmission distance (10–130 km) in terms of Q-factor and optical received power in the presence of fiber noise and non-linearities. It has been observed that TWDM-PON outperforms OTDM-PON and WDM-PON for high input power and data rate (20/20 Gbps). Also, TWDM-PON shows its superiority for long-reach transmission up to 130 km, which is a cost-effective solution for future NG-PON2 applications.


Author(s):  
Dawit Hadush Hailu

<p>Cloud Radio Access Network (C-RAN) has emerged as a promising solution to meet the ever-growing capacity demand and reduce the cost of mobile network components. In such network, the mobile operator’s Remote Radio Head (RRH) and Base Band Unit (BBU) are often separated and the connection between them has very tight timing and latency requirements. To employ packet-based network for C-RAN fronthaul, the carried fronthaul traffic are needed to achieve the requirements of fronthaul streams. For this reason, the aim of this paper is focused on investigating and evaluating the feasibility of Integrated Hybrid Optical Network (IHON) networks for mobile fronthaul. TransPacket AS (www.transpacket.com) develops a fusion switching that efficiently serves both Guaranteed Service Transport (GST) traffic with absolute priority and packet switched Statistical Multiplexing (SM) best effort traffic. We verified how the leftover capacity of fusion node can be used to carry the low priority packets and how the GST traffic can have deterministic characteristics on a single wavelength by delaying it with Fixed Delay Line (FDL). For example, for L<sub>1GE </sub><sup>SM</sup> =0.3 the added SM traffic increases the 10GE wavelength utilization up to 89% without any losses and with SM PLR=1E<sup>-03</sup> up to 92% utilization. The simulated results and numerical analysis confirm that the PDV and PLR of GST traffic in Ethernet network meet the requirements of mobile fronthaul using CPRI. For Ethernet network, the number of nodes in the network limits the maximum separation distance between BBU and RRH (link length); for increasing the number of nodes, the link length decreases. Consequently, Radio over Ethernet (RoE) traffic should receive the priority and Quality of Service (QoS) HP can provide. On the other hand, Low Priority (LP) classes are not sensitive to QoS metrics and should be used for transporting time insensitive applications and services.</p>


2011 ◽  
Vol 130-134 ◽  
pp. 741-744
Author(s):  
Wen Feng Sun ◽  
Yan Zhao Li

The paper illustrates the optical access network which includes AON (active optical network), PON (Passive optical network) and EOC (Ethernet over COAX) systems, implementing DVB business and IP business. The optimal optical access technology is selected according to different access situations in the project. The optical access network accomplishes the wire access and wireless access. In order to reduce the cost, the coax is efficiently used.


Sign in / Sign up

Export Citation Format

Share Document