scholarly journals The Influence of Silicon and Multinutrient Fertilizer On the Quality and Chemical Composition of Gazania Rigens ‘Kiss Yellow’, Salvia Farinacea ‘Fairy Queen’ and Verbena ‘Obsession Lilac’ Plants

2017 ◽  
Vol 25 (1) ◽  
pp. 35-45
Author(s):  
Regina Dębicz ◽  
Anna Pawlikowska ◽  
Katarzyna Wróblewska ◽  
Przemysław Bąbelewski

AbstractSilicon supplementation may lead to positive changes in plant quality, including their appearance. The two-factorial experiment with three ornamental plant taxa Gazania rigens ‘Kiss Yellow’, Salvia farinacea ‘Fairy Queen’ and Verbena ‘Obsession Lilac’ was conducted in the years 2012-2013. The first factor was foliar application of Si in form of ortho-silicic acid stabilized with choline (YaraVita Actisil) at the concentrations of 60, 120 and 180 mg·dm-3, while the second was soil application of multinutrient fertilizer (Insol U) at the concentrations of 0.25% and 0.50%. Biometric measurements of plants were carried out at the beginning of flowering. The laboratory analyses included the determination of the content of P, K, Ca, Mg and Si as well as chlorophyll content in the leaves. Silicon had a beneficial influence on a majority of the analysed morphological features. Plants reacted best to high silicon doses (120 and 180 mg·dm-3). Particularly beneficial effects were noted with respect to improved flowering of all analysed plant taxa and to the vegetative development of Salvia and Gazania. Insol U supplementation noticeably improved the flowering of Verbena.

2019 ◽  
Vol 4 (1) ◽  
pp. 164-172 ◽  
Author(s):  
Yaghoub Aghaye Noroozlo ◽  
Mohammad Kazem Souri ◽  
Mojtaba Delshad

AbstractAmino acids have various roles in plant metabolism, and exogenous application of amino acids may have benefits and stimulation effects on plant growth and quality. In this study, the growth and nutrient uptake of Romain lettuce (Lactuca sativa subvar Sahara) were evaluated under spray of glycine or glutamine at different concentrations of 0 (as control), 250, 500 and 1000 mg.L-1, as well as a treatment of 250 mg.L-1 glycine+250 mg.L-1 glutamine. The results showed that there was significant increase in leaf total chlorophyll content under Gly250+Glu250, Gly250 and Glu1000 mg.L-1treatments, and in leaf carotenoids content under 250 mg.L-1 glutamine spray compared with the control plants. Shoot fresh and dry weights were highest under 500 mg.L-1 glycine, whereas root fresh weight was highest under 250 mg.L-1 glycine spray. Foliar application of glycine and glutamine had no significant increase in leaf mineral concentrations except for iron, in which 1000 mg.L-1Gly spray resulted in significantly higher leaf Fe concentration compared with the control plants. Leaf vitamin C was increased at 250 and particularly 500 mg.L-1 spray of glycine and glutamine compared with the control. Nevertheless, different amino acid treatments had no significant effect on plant height, leaf SPAD value, root dry weight, and leaf concentrations of N, K, Ca, Mg and Zn. The results indicate that foliar application of glycine and glutamine amino acids can have beneficial effects on lettuce growth, as higher fresh yield, leaf chlorophyll content and vitamin C were obtained by low to moderate concentrations of glycine and/or glutamine amino acids.


2008 ◽  
Vol 63 (4) ◽  
Author(s):  
Grzegorz Kulczycki ◽  
Rafał Januszkiewicz ◽  
Artur Jachymczak

1988 ◽  
Vol 53 (8) ◽  
pp. 1735-1744 ◽  
Author(s):  
Jitka Horská ◽  
Jaroslav Stejskal ◽  
Pavel Kratochvíl ◽  
Aubrey D. Jenkins ◽  
Eugenia Tsartolia ◽  
...  

An attempt was made to prepare well-defined graft copolymers by the coupling reaction between acyl chloride groups located along the backbone chain and monohydroxy-terminated grafts prepared separately. The molecular weights and the parameters of heterogeneity in chemical composition of the products were determined by light scattering and osmometry. The determination of molecular characteristics revealed that the degree of grafting was low. The results therefore could not be confronted with a statistical model at this stage. The problems encountered in the synthesis, e.g., gel formation, and the data relating to the soluble products are discussed.


Sugar Tech ◽  
2021 ◽  
Author(s):  
Arkadiusz Artyszak ◽  
Małgorzata Kondracka ◽  
Dariusz Gozdowski ◽  
Alicja Siuda ◽  
Magda Litwińczuk-Bis

AbstractThe effect of marine calcite, a mixture of ortho- and polysilicic acid as well as orthosilicic acid applied as a foliar spray on the chemical composition of sugar beet leaves in the critical phase of nutrient supply (beginning of July) but also leaves and roots during harvest time in 2015–2016, was studied. The content of silicon in the leaves ranged from 1.24 to 2.36 g kg−1 d.m. at the beginning of July, 3.85–5.34 g kg−1 d.m. during harvest and 2.91–4.20 g kg−1 d.m. in the roots. The foliar application of silicon caused a significant increase in the content of magnesium and calcium in leaves (in July) as compared to the control. The sugar beet consumes approx. 75 kg Si ha−1, which is almost 3.5 times more than P and 20% more than Mg thus proving its importance for its species. About 70% of the silicon taken up by sugar beet is stored in roots and 30% in leaves. The pure sugar yield is most favorably influenced by two- and threefold foliar application of the product containing silicon in the form of orthosilicic acid stabilized with choline, and a threefold mixture of ortho- and polysilicic acid. The increase in the pure sugar yield is not the result of a change in the chemical composition of sugar beet plants, but their more efficient functioning after foliar application of silicon under stress conditions caused by water shortage.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 851
Author(s):  
Sonia Cacini ◽  
Sara Di Lonardo ◽  
Simone Orsenigo ◽  
Daniele Massa

Professional peat-free substrates for ornamental plant production are increasingly required by nursery growers. Most promising materials are green compost, coconut coir dust, and woody fibre, used alone or in mixtures. One of the major concerns is pH, usually higher than optimal. In this work, a method based on a three-step procedure was adopted to acidify three organic matrices alone or in mixtures and to individuate the most suitable product, between iron(II) sulphate 7-hydrate and elemental sulphur chips. Firstly, the determination of the buffering capacity by dilution with sulphuric acid was carried out to determine dosages. Afterwards, an incubation trial of 84 (iron(II) sulphate) or 120 days (sulphur chips) was conducted on matrices and substrate mixtures with calculated doses in a climatic chamber maintained at 21 °C. Iron(II) sulphate resulted not suitable because it caused a rapid, but not lasting, pH lowering and an excessive electrical conductivity (EC) increase. Sulphur chips could instead guarantee an adequate and lasting pH lowering. These results were then validated in the open field trial on matrices and substrates. The proposed acidification methodology could be considered in developing new substrates, but the rapidity of pH acidification and EC increase on plant and mineral nutrition should be further investigated.


Sign in / Sign up

Export Citation Format

Share Document