Editorial. Fire protection in nuclear power plants: current status and further development

Kerntechnik ◽  
2000 ◽  
Vol 65 (2-3) ◽  
pp. 76-76
Author(s):  
H.-P. Berg
Author(s):  
Sangmyeon Ahn ◽  
Jungjoon Lee ◽  
Chanwoo Jeong ◽  
Kyungwoo Choi

We are having 23 units of nuclear power plants in operation and 5 units of nuclear power plants under construction in Korea as of September 2012. However, we don’t have any experience on shutdown permanently and decommissioning of nuclear power plants. There are only two research reactors being decommissioned since 1997. It is realized that improvement of the regulatory framework for decommissioning of nuclear facilities has been emphasized constantly from the point of view of IAEA’s safety standards. It is also known that IAEA will prepare the safety requirement on decommissioning of facilities; its title is the Safe Decommissioning of Facilities, General Safety Requirement Part 6. According to the result of IAEA’s Integrated Regulatory Review Service (IRRS) mission to Korea in 2011, it was recommended that the regulatory framework should require decommissioning plans for nuclear installations to be constructed and operated and these plans should be updated periodically. In addition, after the Fukushima nuclear disaster in Japan in March of 2011, preparedness for early decommissioning caused by an unexpected severe accident became important issues and concerns. In this respect, it is acknowledged that the regulatory framework for decommissioning of nuclear facilities in Korea need to be improved. First of all, we focus on identifying the current status and relevant issues of regulatory framework for decommissioning of nuclear power plants compared to the IAEA’s safety standards in order to achieve our goal. And then the plan is established for improvement of regulatory framework for decommissioning of nuclear power plants in Korea. It is expected that if the things will go forward as planned, the revised regulatory framework for decommissioning could enhance the safety regime on the decommissioning of nuclear power plants in Korea in light of international standards.


Author(s):  
Bernard Gautier ◽  
Mickael Cesbron ◽  
Richard Tulinski

Fire hazard is an important issue for the safety of nuclear power plants: the main internal hazard in terms of frequency, and probably one the most significant with regards to the design costs. AFCEN is publishing in 2018 a new code for fire protection of new built PWR nuclear plants, so-called RCC-F. This code is an evolution of the former ETC-F code which has been applied to different EPR plants under construction (Flamanville 3 (FA3, France), Hinkley Point C (HPC, United Kingdom), Taïshan (TSN, China)). The RCC-F code presents significant enhancement and evolutions resulting from eight years of work by the AFCEN dedicated sub-committee, involving a panel of contributors from the nuclear field. It is now opened to any type of PWR (Pressurized Water Reactor) type of nuclear power plants and not any longer limited to EPR (European Pressurized Reactor) plants. It can potentially be adapted to other light water concepts. Its objective is to help engineers design the fire prevention and protection scheme, systems and equipment with regards to the safety case and the defense in depth taking into account the French and European experience in the field. It deals also with the national regulations, with two appendices dedicated to French and British regulations respectively. The presentation gives an overview of the code specifications and focuses on the significant improvements.


1997 ◽  
Vol 173 (1-3) ◽  
pp. 43-57 ◽  
Author(s):  
G.L. Lunin ◽  
V.A. Voznesensky ◽  
V.G. Fedorov ◽  
M.F. Rogov ◽  
V.M. Berkovich ◽  
...  

Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1597
Author(s):  
Butaek Lim ◽  
Kitae Kim ◽  
Hyunyoung Chang ◽  
Heungbae Park ◽  
Youngsik Kim

Cast iron is primarily used in buried piping to transport water in the fire protection system of nuclear power plants; ductile cast iron is generally used for domestic nuclear power plants. In general, the fluid used as fire-extinguishing water in such fire protection systems is tap water, and corrosion inhibitors are not currently added. In this study, the synergistic effect of an adsorption barrier (monoethanolamine) and oxidized film in an environment with a corrosion inhibitor (tungstate) is examined, and the corresponding passivation properties are presented. An immersion corrosion test and electrochemical test in tap water to which only tungstate was added showed suppression of corrosion compared to molybdate at the same concentration. The polarization resistance value of a passivation film in tap water mixed with monoethanolamine and tungstate showed better results than that of the molybdate control. A surface analysis in mixed addition tap water also demonstrated that oxygen ions were sufficiently distributed, including at some spheroidized graphite sites, when tungstate was added compared to molybdate. In addition, the amount of tungsten ions adsorbed on the surface was larger than that of molybdenum ions, and it was confirmed that tungsten ions were evenly distributed over the entire surface.


Sign in / Sign up

Export Citation Format

Share Document