scholarly journals Hom-structures on semi-simple Lie algebras

2015 ◽  
Vol 13 (1) ◽  
Author(s):  
Wenjuan Xie ◽  
Quanqin Jin ◽  
Wende Liu

AbstractA Hom-structure on a Lie algebra (g,[,]) is a linear map σ W g σ g which satisfies the Hom-Jacobi identity: [σ(x), [y,z]] + [σ(y), [z,x]] + [σ(z),[x,y]] = 0 for all x; y; z ∈ g. A Hom-structure is referred to as multiplicative if it is also a Lie algebra homomorphism. This paper aims to determine explicitly all the Homstructures on the finite-dimensional semi-simple Lie algebras over an algebraically closed field of characteristic zero. As a Hom-structure on a Lie algebra is not necessarily a Lie algebra homomorphism, the method developed for multiplicative Hom-structures by Jin and Li in [J. Algebra 319 (2008): 1398–1408] does not work again in our case. The critical technique used in this paper, which is completely different from that in [J. Algebra 319 (2008): 1398– 1408], is that we characterize the Hom-structures on a semi-simple Lie algebra g by introducing certain reduction methods and using the software GAP. The results not only improve the earlier ones in [J. Algebra 319 (2008): 1398– 1408], but also correct an error in the conclusion for the 3-dimensional simple Lie algebra sl2. In particular, we find an interesting fact that all the Hom-structures on sl2 constitute a 6-dimensional Jordan algebra in the usual way.

2012 ◽  
Vol 19 (04) ◽  
pp. 755-770
Author(s):  
Li Luo

A well-known Peterson's theorem says that the number of abelian ideals in a Borel subalgebra of a rank-r finite-dimensional simple Lie algebra is exactly 2r. In this paper, we determine the dimensional distribution of abelian ideals in a Borel subalgebra of finite-dimensional simple Lie algebras, which is a refinement of Peterson's theorem capturing more Lie algebra invariants.


1979 ◽  
Vol 31 (5) ◽  
pp. 929-941 ◽  
Author(s):  
G. M. Benkart ◽  
I. M. Isaacs

We consider finite dimensional Lie algebras over an algebraically closed field F of arbitrary characteristic. Such an algebra L will be called a centralizer nilpotent Lie algebra (abbreviated c.n.) provided that the centralizer C(x) is a nilpotent subalgebra of L for all nonzero x ∈ L.For each algebraically closed F, there is a unique simple Lie algebra of dimension 3 over F which we shall denote S(F). This algebra has a basis e−1, e0, e1 such that [e−1e0] = e−1, [e−1e1] = e0 and [e0e1] = e1. (If char(F) ≠ 2, then S(F) ≅ sl2(F).) It is trivial to check that S(F) is a c.n. algebra for all F.There are two other types of simple Lie algebras we consider. If char (F) = 3, construct the octonion (Cayley) algebra over F.


2020 ◽  
Vol 32 (1) ◽  
pp. 201-206
Author(s):  
Antonio Giambruno ◽  
Mikhail Zaicev

AbstractLet L be a finite-dimensional simple Lie algebra over an algebraically closed field of characteristic zero and let I be the T-ideal of polynomial identities of the adjoint representation of L. We prove that the number of multilinear central polynomials in n variables, linearly independent modulo I, grows exponentially like {(\dim L)^{n}}.


2007 ◽  
Vol 17 (03) ◽  
pp. 527-555 ◽  
Author(s):  
YOU'AN CAO ◽  
DEZHI JIANG ◽  
JUNYING WANG

Let L be a finite-dimensional complex simple Lie algebra, Lℤ be the ℤ-span of a Chevalley basis of L and LR = R⊗ℤLℤ be a Chevalley algebra of type L over a commutative ring R. Let [Formula: see text] be the nilpotent subalgebra of LR spanned by the root vectors associated with positive roots. The aim of this paper is to determine the automorphism group of [Formula: see text].


2002 ◽  
Vol 01 (04) ◽  
pp. 413-424 ◽  
Author(s):  
V. D. LYAKHOVSKY ◽  
M. E. SAMSONOV

The twist deformations for simple Lie algebras [Formula: see text] whose twisting elements ℱ are known explicitly are usually defined on the carrier subspace injected in the Borel subalgebra [Formula: see text]. We consider the case where the carrier of the twist intersects nontrivially with both [Formula: see text] and [Formula: see text]. The main element of the new deformation is the parabolic twist ℱ℘ whose carrier is the minimal parabolic subalgebra of simple Lie algebra [Formula: see text]. It has the structure of the algebra of two-dimensional motions, contains [Formula: see text] and intersects nontrivially with [Formula: see text]. The twist ℱ℘ is constructed as a composition of the extended jordanian twist [Formula: see text] and the factor [Formula: see text]. The latter can be considered as a special deformed version of the jordanian twist. The twisted costructure is found for [Formula: see text] and the corresponding universal ℛ-matrix is presented. The parabolic twist can be composed with certain types of chains of extended jordanian twists for algebras A2(n-1). The chains enlarged by the parabolic factor ℱ℘ perform the explicit quantization of the new set of classical r-matrices.


1970 ◽  
Vol 13 (4) ◽  
pp. 463-467 ◽  
Author(s):  
F. W. Lemire

Let L denote a semi-simple, finite dimensional Lie algebra over an algebraically closed field K of characteristic zero. If denotes a Cartan subalgebra of L and denotes the centralizer of in the universal enveloping algebra U of L, then it has been shown that each algebra homomorphism (called a "mass-function" on ) uniquely determines a linear irreducible representation of L. The technique involved in this construction is analogous to the Harish-Chandra construction [2] of dominated irreducible representations of L starting from a linear functional . The difference between the two results lies in the fact that all linear functionals on are readily obtained, whereas since is in general a noncommutative algebra the construction of mass-functions is decidedly nontrivial.


2019 ◽  
Vol 53 (supl) ◽  
pp. 45-86
Author(s):  
Yuri Bahturin ◽  
Mikhail Kochetov ◽  
Abdallah Shihadeh

The paper is devoted to the study of graded-simple modules and gradings on simple modules over finite-dimensional simple Lie algebras. In general, a connection between these two objects is given by the so-called loop construction. We review the main features of this construction as well as necessary and sufficient conditions under which finite-dimensional simple modules can be graded. Over the Lie algebra sl2(C), we consider specific gradings on simple modules of arbitrary dimension.


1969 ◽  
Vol 21 ◽  
pp. 1432-1454 ◽  
Author(s):  
Robert V. Moody

Our aim in this paper is to study a certain class of Lie algebras which arose naturally in (4). In (4), we showed that beginning with an indecomposable symmetrizable generalized Cartan matrix (A ij) and a field Φ of characteristic zero, we could construct a Lie algebra E((A ij)) over Φ patterned on the finite-dimensional split simple Lie algebras. We were able to show that E((A ij)) is simple providing that (A ij) does not fall in the list given in (4, Table). We did not prove the converse, however.The diagrams of the table of (4) appear in Table 2. Call the matrices that they represent Euclidean matrices and their corresponding algebras Euclidean Lie algebras. Our first objective is to show that Euclidean Lie algebras are not simple.


1985 ◽  
Vol 37 (1) ◽  
pp. 122-140 ◽  
Author(s):  
D. J. Britten ◽  
F. W. Lemire

In this paper, we investigate a conjecture of Dixmier [2] on the structure of basic cycles. Our interest in basic cycles arises primarily from the fact that the irreducible modules of a simple Lie algebra L having a weight space decomposition are completely determined by the irreducible modules of the cycle subalgebra of L. The basic cycles form a generating set for the cycle subalgebra.First some notation: F denotes an algebraically closed field of characteristic 0, L a finite dimensional simple Lie algebra of rank n over F, H a fixed Cartan subalgebra, U(L) the universal enveloping algebra of L, C(L) the centralizer of H in U(L), Φ the set of nonzero roots in H*, the dual space of H, Δ = {α1, …, αn} a base of Φ, and Φ+ = {β1, …, βm} the positive roots corresponding to Δ.


2008 ◽  
Vol 11 ◽  
pp. 280-297 ◽  
Author(s):  
Willem A. de Graaf

AbstractLet G be a simple algebraic group over an algebraically closed field with Lie algebra g. Then the orbits of nilpotent elements of g under the adjoint action of G have been classified. We describe a simple algorithm for finding a representative of a nilpotent orbit. We use this to compute lists of representatives of these orbits for the Lie algebras of exceptional type. Then we give two applications. The first one concerns settling a conjecture by Elashvili on the index of centralizers of nilpotent orbits, for the case where the Lie algebra is of exceptional type. The second deals with minimal dimensions of centralizers in centralizers.


Sign in / Sign up

Export Citation Format

Share Document